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A.30 A. SOME ALGEBRA

A.3. A Primer on Finite Fields

A.3.1. Recall. We first recall some general results.

Let K be a field and f(x) be a nonconstant polynomial of K[x]. Then f(x)
is called irreducible in K[x] if every factorization f(z) = a(z)b(z) in K[x] has
{dega,degb} = {0,deg f}. (This corresponds to prime numbers in Z.) Otherwise
f(x) is reducible.

We begin with an important, general result. (It is Theorem A.2.22 of the
Algebra Appendix.)

A.3.1. THEOREM. Let f(x) € K[x] for K a field, with deg f > 1. Then the
ring K[x] (mod f(x)) is a field if and only if f(x) is irreducible.

PROOF. Assume that f(z) is irreducible. Everything needed for K[z] (mod f(z)) to be a
field is clear except for the claim that all nonzero elements have multiplicative inverses.

Suppose that g(z) is not zero in K[z] (mod f(z)). That is, suppose that g(z) is not
a multiple of f(z). Then ged(g(z), f(z)) = ged(r(z), f(z)), where r(z) is the remainder
upon division of g(z) by f(z). The polynomial r(x) has degree less than deg f and is
nonzero since g(z) is not a multiple of f(z).

Thus ged(g(z), f(z)) = ged(r(z), f(z)) is a divisor of f(x) that has degree less than
f(z). As f(x) is irreducible, that degree must be 0. Therefore monic ged(g(z), f(z)) =
ged(r(z), f(z)) = 1. Now by the Extended Euclidean Algorithm, there are s(z) and t(x)
in K[z] with s(z)g(z) + t(z) f(z) = 1. That is, s(z)g(z) =1 (mod f(z)), and s(z) is an
inverse for g(x) in the field K[z] (mod f(z)).

Conversely suppose that f(x) is reducible, and let f(z) = a(x)b(z) be a factorization
with 0 < dega < deg f and 0 < degb < deg f. Then in the ring K[z] (mod f(z)) the
elements a(x) and b(x) are nonzero but have zero product. The ring is therefore not a
field. m|

A.3.2. EXAMPLES.

(i) The polynomial z* + 1 is irreducible in R[z] (as otherwise it would have a
root in R). Therefore R[z] (mod z? + 1) is a field. Indeed, it is a copy of the
complex numbers C = R 4+ Ri, where i is a root of x> + 1 in C.

(ii) The polynomial x* + 1 is irreducible in F3]x] (as otherwise it would have a
root in B3 = {0,1,2}). Therefore F3[x] (mod x? + 1) is a field. Indeed, it is
a field with nine elements Fg = Fg + F3i, where i is a root of £? + 1 in Fy.

(ili) The polynomial z* + 1 is reducible in Fs|x] since 2 is a root ((x —2)(x +2) =
22 —4 =22 +1). Therefore Fs[z] (mod 2% + 1) is not a field.

Recall Lemma A.2.20:

A.33. LEMMA.  Let F be a field, and let p(z),q(x),m(z) € Flz]. Sup-
pose m(z) divides the product p(z)q(x) but m(x) and p(x) are relatively prime,
ged(m(z),p(x)) = 1. Then m(z) divides q(x).

Also recall Proposition A.2.10:

A.3.4. PROPOSITION. Let p(x) be a nonzero polynomial in Flz], F a field, of
degree d. Then p(x) has at most d distinct roots in F. O

The following consequence will be of help.

A35. LEMMA. In F[z] let m;(z), for 1 <i <k, be pairwise relatively prime
divisors of f(x). Then Hle m;(z) divides f(x).
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PROOF. The proof is by induction on k. Write f(z) = mi(z)f1(z). Then by Lemma
A.3.3 each m;(z), for 2 < i < k, divides fi(z). By induction H?:z m;(z) divides fi(z)
and so [T, mi(z) divides f(z). O

A.3.2. Basics. From now on, F will denote a finite field.

A.3.6. LEMMA. F contains a copy of Z, =T, for some prime p. (This prime
is called the characteristic of F'.)

PROOF. (See Lemma A.1.3.) Consider the apparently infinite subset {1, 141, 14+1+1, ...}
of the finite field F'. O

A.3.7. LEMMA. There is a positive integer d with |F| = p?. Set ¢ = |F| = p?.

PROOF. (See Problem A.1.6.) From the definitions, F is a vector space over FF,. Let
e1,...,eq be a basis. Then F = { E‘::l ;€ | ai,...,aq € Fp } Thus |F| is the number

of choices for the a;, namely p?. O

A3.8. LEMMA. Leta € F >TF,, and let m(z) € F,[x] be a monic polynomial
of minimal degree with m(a) = 0. (It exists since F is finite.) Then m(zx) is

irreducible and
k
Fyla] = { Zaiai
i=0

is a subfield of F that is a copy of Fy[z] (mod m(z)). Its size is p° where e is the
degree of m(zx).

k>0, aiEIFp}

PROOF. It is clear that the arithmetic of Fp[a] is the same as that of Fp[z] (mod m(z)).
Especially it has size p°.

Suppose that m(x) is reducible, and let m(z) = a(z)b(x) be a factorization with
0 < dega < degm and 0 < degb < degm. Then a(a)b(a) = m(a) = 0. Therefore either
a(a) = 0 or b(ar) = 0. But both contradict our choice of m(z) as a nonzero polynomial
of minimal degree having a as a root. So m(x) is not reducible and is irreducible. In
particular, by Theorem A.2.22, Fp[a] is a field. m|

The polynomial m(z) is called the minimal polynomial of o over F,, and is
uniquely determined. We sometimes write mq () or even mqr, () for the minimal
polynomial of a over IFp,.

A.3.9. LEMMA. For every 3 in F \ {0}, the smallest positive h with B =1 is
a divisor of ¢ — 1. (We write h = |3| and call h the order of 5.)

PRrROOF. Consider the directed graph on F'\ {0} that has an edge directed from a to b
precisely when a8 = b. Each connected component of this graph is a directed circuit
(cycle). Let H be the component of 1. Then |H| = h. Furthermore, the component
containing a is aH. Thus F' \ {0} of size ¢ — 1 is the disjoint union of circuits of size h,
and especially h divides ¢ — 1. O

A.3.10. PROPOSITION. [t is possible to pick the o of Lemma A.3.8 so that
F =TF,[a]. Indeed, it is possible to pick an o with a9~! =1, (where ¢ = |F| = p?)
and
F={0}u{l,a,a?, ...,a% ..., ?%}.

PROOF. Let | = lem,cpx (|a]). Thus b' = 1, for all b € F'*, whereas %' = 1 by (3); so
Il = q—1 by Proposition A.3.4.
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Let q—1= Hle p;* be the factorization of ¢ — 1 into distinct prime powers. If a has
order mp;*, then a™ has order p;*. Thus F; contains an element a; of order p;* for each
1. But then o = Hle a; is an element of order ¢ — 1. O

An element o with F = {0} U {l,a,0?,...,a%,...,a? 2} is called a primitive
element in F', and its minimal polynomial m,, (z) is a primitive polynomial.

Another way of saying this is that the primitive polynomials of degree d > 1 in
F,[z] are precisely those irreducible polynomials that divide 2#"=1 — 1 but do not
divide 2™ — 1 for any m < p® — 1.

The previous two results immediately give:

A.3.11. COROLLARY. Every finite field F is a copy of Fplz] (mod f(z))
for some monic irreducible polynomial f(x) € Fplzx]. If f(x) has degree d, then
|F| = p. O

A.3.12. THEOREM. (The converse of Lemma A.3.7.) For every prime p and
positive integer d, there is a finite field F with |F| = p?.

As we have seen, this is equivalent to proving that there is an irreducible polynomial
of degree d in Fp[x] for every d. This is harder to prove. The result follows from Theorem
A.3.16 of the next subsection. Here is the idea:

One can view our proof of Proposition A.3.10 as a counting argument—
all the elements of F'\ {0} have order at most ¢ — 1 but F'\ {0} is so
big that it is not possible for all of its elements to have order less than
g—1. A similar (but more complicated) counting argument concerning
irreducible polynomials of degree at most d gives this result.

A.3.13. EXAMPLE.  The polynomial 2% + = + 1 € Fa[z] is irreducible (as
otherwise it would have a root 0 or 1). Thus Fa[z] (mod 2% + z + 1) is a field Fy
with 4 = 22 elements. Letw be a root of x2+x+1. Then Fy is Folw] = {0,1,w,w? =
1+ w}. The element w is primitive, and the polynomial x®> + x + 1 is a primitive
polynomial.

A.3.14. EXAMPLE.  The polynomial 2* + x + 1 € Fa[z] is irreducible (as
otherwise it would have a root 0 or 1). Thus Fa[z] (mod x3 + x + 1) is a field Fg
with 8 = 23 elements. Let a be a root of x3 +x + 1. Then Fg is Fa[a]. The element
o is primitive, and the polynomial 3 + x + 1 s a primitive polynomial.

A.3.15. EXAMPLE. As we have noted, the polynomial x® + 1 is irreducible
in Fs[z] (as otherwise it would have a root in F3 = {0,1,2}). Therefore F3[x]
(mod 2 + 1) is a field; it is a field with nine elements Fg = F3 + F3i, where i is a
root of 2 + 1 in Fy. Here i is not a primitive element but 1 + 1 is.

A.3.3. Existence in all cases. We only need the case ¢ = p of the next
Theorem, but no extra work is required to prove the following stronger result.

A.3.16. THEOREM. For every finite field Fy and positive integer d, there is
an irreducible polynomial in Fy[x] of degree d.

We make use of a sequence of lemmas.

A3.17. LEMMA. Let K be a field containing the subfield F,. Then the elements
of Fy are precisely the roots in K of the polynomial 29 — x € Fy[z] < K[z]. That

is, 1 — & = [[ 5, (. — a).
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PROOF. By Lemma A.3.9 every nonzero element of F, is a root of 971 — 1,
hence each of the ¢ elements of F, is a root of 9 — x. The result follows from
Proposition A.3.4. O

Compare the next lemma with the definition of a primitive polynomial.

A3.18. LEMMA. If f(z) € Fylz] is irreducible of degree d, then it divides
29" — 2 but does not divide 29" — x for any a < d.

PROOF. Let a be the image of z in K = Fpa = Fy[z] (mod f(x)), a field by
Theorem A.3.1. As f(a) = 0 in Fga, the irreducible f(x) must be the minimal
(

polynomial of « over F, (up to a scalar). In particular f(z) divides P

. Suppose f(z) divides 29" — @, say f(z)g(z) = 27" — z. Then in F 4, we have
a? —a = f(a)g(a) = 0, so a? = «a. Every element b of Fya can be written
uniquely as b = thol b;at, for certain b; € F,. By the previous lemma b! = b;, for
all 5. Then by the Freshman’s Dream

-1 g 4
o — (Zbiaz> - (bi)qe<az>qe
=0

=0 i

d—1 '
= zpw:u
1=0

That is, every b € Fga satisfies b? — b = 0; and 29" — 2 has at least ¢ distinct
roots. By Proposition A.3.4 again, e > d as claimed. O

A.3.19. LEMMA. 27—z is square free.

PROOF. We prove this using the formal derivative. Indeed
gcd(qu -z, (qu —z)) = gcd(:z:qk —z,-1)=1,

k .
so 9 — x is square-free. O

Proor orF THEOREM A.3.16:
Let F;(z) be the product of all distinct monic irreducible polynomials of degree d.
Furthermore let fy(x) be the product of all degree d monic irreducible factors of
k
! — .
By results A.3.5, A.3.18, and A.3.19, the polynomial fg(x) divides Fy(z) and
Fy(x) divides 29" — . Also by Lemma A.3.18 we have 29 — 2 = Hl;:l fa(z).

Therefore
k—1

k—1
(@7 —2)/fu(x) = [] falz) divides ][] Fa(x)
d=1

d=1
of degree at most Zs;i q% < ¢*. We conclude that fi(x) has positive degree, and
sozd —x possesses irreducible factors of degree k, as desired. 0O
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