A.3. A Primer on Finite Fields

A.3.1. Recall. We first recall some general results.

Let K be a field and $f(x)$ be a nonconstant polynomial of $K[x]$. Then $f(x)$ is called irreducible in $K[x]$ if every factorization $f(x)=a(x) b(x)$ in $K[x]$ has $\{\operatorname{deg} a, \operatorname{deg} b\}=\{0, \operatorname{deg} f\}$. (This corresponds to prime numbers in \mathbb{Z}.) Otherwise $f(x)$ is reducible.

We begin with an important, general result. (It is Theorem A.2.22 of the Algebra Appendix.)
thm-A.2.22
A.3.1. Theorem. Let $f(x) \in K[x]$ for K a field, with $\operatorname{deg} f \geq 1$. Then the ring $K[x](\bmod f(x))$ is a field if and only if $f(x)$ is irreducible.

Proof. Assume that $f(x)$ is irreducible. Everything needed for $K[x](\bmod f(x))$ to be a field is clear except for the claim that all nonzero elements have multiplicative inverses.

Suppose that $g(x)$ is not zero in $K[x](\bmod f(x))$. That is, suppose that $g(x)$ is not a multiple of $f(x)$. Then $\operatorname{gcd}(g(x), f(x))=\operatorname{gcd}(r(x), f(x))$, where $r(x)$ is the remainder upon division of $g(x)$ by $f(x)$. The polynomial $r(x)$ has degree less than $\operatorname{deg} f$ and is nonzero since $g(x)$ is not a multiple of $f(x)$.

Thus $\operatorname{gcd}(g(x), f(x))=\operatorname{gcd}(r(x), f(x))$ is a divisor of $f(x)$ that has degree less than $f(x)$. As $f(x)$ is irreducible, that degree must be 0 . Therefore monic $\operatorname{gcd}(g(x), f(x))=$ $\operatorname{gcd}(r(x), f(x))=1$. Now by the Extended Euclidean Algorithm, there are $s(x)$ and $t(x)$ in $K[x]$ with $s(x) g(x)+t(x) f(x)=1$. That is, $s(x) g(x)=1(\bmod f(x))$, and $s(x)$ is an inverse for $g(x)$ in the field $K[x](\bmod f(x))$.

Conversely suppose that $f(x)$ is reducible, and let $f(x)=a(x) b(x)$ be a factorization with $0<\operatorname{deg} a<\operatorname{deg} f$ and $0<\operatorname{deg} b<\operatorname{deg} f$. Then in the ring $K[x](\bmod f(x))$ the elements $a(x)$ and $b(x)$ are nonzero but have zero product. The ring is therefore not a field.

A.3.2. Examples.

(i) The polynomial $x^{2}+1$ is irreducible in $\mathbb{R}[x]$ (as otherwise it would have a root in $\mathbb{R})$. Therefore $\mathbb{R}[x]\left(\bmod x^{2}+1\right)$ is a field. Indeed, it is a copy of the complex numbers $\mathbb{C}=\mathbb{R}+\mathbb{R} i$, where i is a root of $x^{2}+1$ in \mathbb{C}.
(ii) The polynomial $x^{2}+1$ is irreducible in $\mathbb{F}_{3}[x]$ (as otherwise it would have a root in $\left.\mathbb{F}_{3}=\{0,1,2\}\right)$. Therefore $\mathbb{F}_{3}[x]\left(\bmod x^{2}+1\right)$ is a field. Indeed, it is a field with nine elements $\mathbb{F}_{9}=\mathbb{F}_{3}+\mathbb{F}_{3} i$, where i is a root of $x^{2}+1$ in \mathbb{F}_{9}.
(iii) The polynomial $x^{2}+1$ is reducible in $\mathbb{F}_{5}[x]$ since 2 is a root $((x-2)(x+2)=$ $\left.x^{2}-4=x^{2}+1\right)$. Therefore $\mathbb{F}_{5}[x]\left(\bmod x^{2}+1\right)$ is not a field.

Recall Lemma A.2.20:
A.3.3. Lemma. Let F be a field, and let $p(x), q(x), m(x) \in F[x]$. Suppose $m(x)$ divides the product $p(x) q(x)$ but $m(x)$ and $p(x)$ are relatively prime, $\operatorname{gcd}(m(x), p(x))=1$. Then $m(x)$ divides $q(x)$.

Also recall Proposition A.2.10:
prop-E. 4
A.3.4. Proposition. Let $p(x)$ be a nonzero polynomial in $F[x], F$ a field, of degree d. Then $p(x)$ has at most d distinct roots in F.

The following consequence will be of help.
lem-helpful-bis
A.3.5. Lemma. In $F[x]$ let $m_{i}(x)$, for $1 \leq i \leq k$, be pairwise relatively prime divisors of $f(x)$. Then $\prod_{i=1}^{k} m_{i}(x)$ divides $f(x)$.

Proof. The proof is by induction on k. Write $f(x)=m_{1}(x) f_{1}(x)$. Then by Lemma A.3.3 each $m_{i}(x)$, for $2 \leq i \leq k$, divides $f_{1}(x)$. By induction $\prod_{i=2}^{k} m_{i}(x)$ divides $f_{1}(x)$ and so $\prod_{i=1}^{k} m_{i}(x)$ divides $f(x)$.
A.3.2. Basics. From now on, F will denote a finite field.
A.3.6. Lemma. F contains a copy of $\mathbb{Z}_{p}=\mathbb{F}_{p}$, for some prime p. (This prime lem-pt1 is called the characteristic of F.)

Proof. (See Lemma A.1.3.) Consider the apparently infinite subset $\{1,1+1,1+1+1, \ldots\}$ of the finite field F.
A.3.7. Lemma. There is a positive integer d with $|F|=p^{d}$. Set $q=|F|=p^{d}$. lem-pt2

Proof. (See Problem A.1.6.) From the definitions, F is a vector space over \mathbb{F}_{p}. Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$ be a basis. Then $F=\left\{\sum_{i=1}^{d} a_{i} \mathbf{e}_{i} \mid a_{1}, \ldots, a_{d} \in \mathbb{F}_{p}\right\}$. Thus $|F|$ is the number of choices for the a_{i}, namely p^{d}.
A.3.8. Lemma. Let $\alpha \in F \geq \mathbb{F}_{p}$, and let $m(x) \in \mathbb{F}_{p}[x]$ be a monic polynomial of minimal degree with $m(\alpha)=0$. (It exists since F is finite.) Then $m(x)$ is irreducible and

$$
\mathbb{F}_{p}[\alpha]=\left\{\sum_{i=0}^{k} a_{i} \alpha^{i} \mid k \geq 0, a_{i} \in \mathbb{F}_{p}\right\}
$$

is a subfield of F that is a copy of $\mathbb{F}_{p}[x](\bmod m(x))$. Its size is p^{e} where e is the degree of $m(x)$.
Proof. It is clear that the arithmetic of $\mathbb{F}_{p}[\alpha]$ is the same as that of $\mathbb{F}_{p}[x](\bmod m(x))$. Especially it has size p^{e}.

Suppose that $m(x)$ is reducible, and let $m(x)=a(x) b(x)$ be a factorization with $0<\operatorname{deg} a<\operatorname{deg} m$ and $0<\operatorname{deg} b<\operatorname{deg} m$. Then $a(\alpha) b(\alpha)=m(\alpha)=0$. Therefore either $a(\alpha)=0$ or $b(\alpha)=0$. But both contradict our choice of $m(x)$ as a nonzero polynomial of minimal degree having α as a root. So $m(x)$ is not reducible and is irreducible. In particular, by Theorem A.2.22, $\mathbb{F}_{p}[\alpha]$ is a field.

The polynomial $m(x)$ is called the minimal polynomial of α over \mathbb{F}_{p} and is uniquely determined. We sometimes write $m_{\alpha}(x)$ or even $m_{\alpha, \mathbb{F}_{p}}(x)$ for the minimal polynomial of α over \mathbb{F}_{p}.
A.3.9. Lemma. For every β in $F \backslash\{0\}$, the smallest positive h with $\beta^{h}=1$ is a divisor of $q-1$. (We write $h=|\beta|$ and call h the order of β.)

Proof. Consider the directed graph on $F \backslash\{0\}$ that has an edge directed from a to b precisely when $a \beta=b$. Each connected component of this graph is a directed circuit (cycle). Let H be the component of 1 . Then $|H|=h$. Furthermore, the component containing a is $a H$. Thus $F \backslash\{0\}$ of size $q-1$ is the disjoint union of circuits of size h, and especially h divides $q-1$.
A.3.10. Proposition. It is possible to pick the α of Lemma A.3.8 so that $F=\mathbb{F}_{p}[\alpha]$. Indeed, it is possible to pick an α with $\alpha^{q-1}=1$, (where $\left.q=|F|=p^{d}\right)$ and

$$
F=\{0\} \cup\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{i}, \ldots, \alpha^{q-2}\right\}
$$

Proof. Let $l=\operatorname{lcm}_{a \in F^{\times}}(|a|)$. Thus $b^{l}=1$, for all $b \in F^{\times}$, whereas $b^{q-1}=1$ by (3); so $l=q-1$ by Proposition A.3.4.

Let $q-1=\prod_{i=1}^{k} p_{i}^{e_{i}}$ be the factorization of $q-1$ into distinct prime powers. If a has order $m p_{i}^{e_{i}}$, then a^{m} has order $p_{i}^{e_{i}}$. Thus \mathbb{F}_{q}^{\times}contains an element a_{i} of order $p_{i}^{e_{i}}$ for each i. But then $\alpha=\prod_{i=1}^{k} a_{i}$ is an element of order $q-1$.
An element α with $F=\{0\} \cup\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{i}, \ldots, \alpha^{q-2}\right\}$ is called a primitive element in F, and its minimal polynomial $m_{\alpha}(x)$ is a primitive polynomial.

Another way of saying this is that the primitive polynomials of degree $d>1$ in $\mathbb{F}_{p}[x]$ are precisely those irreducible polynomials that divide $x^{p^{d}-1}-1$ but do not divide $x^{m}-1$ for any $m<p^{d}-1$.

The previous two results immediately give:
cor-pt6
thm-pt7
eg-gf4 otherwise it would have a root 0 or 1$)$. Thus $\mathbb{F}_{2}[x]\left(\bmod x^{2}+x+1\right)$ is a field \mathbb{F}_{4} otherwise it would have a root 0 or 1$)$. Thus $\mathbb{F}_{2}[x]\left(\bmod x^{2}+x+1\right)$ is a field \mathbb{F}_{4}
with $4=2^{2}$ elements. Let ω be a root of $x^{2}+x+1$. Then \mathbb{F}_{4} is $\mathbb{F}_{2}[\omega]=\left\{0,1, \omega, \omega^{2}=\right.$ $1+\omega\}$. The element ω is primitive, and the polynomial $x^{2}+x+1$ is a primitive polynomial.
A.3.14. Example. The polynomial $x^{3}+x+1 \in \mathbb{F}_{2}[x]$ is irreducible (as otherwise it would have a root 0 or 1$)$. Thus $\mathbb{F}_{2}[x]\left(\bmod x^{3}+x+1\right)$ is a field \mathbb{F}_{8} with $8=2^{3}$ elements. Let α be a root of $x^{3}+x+1$. Then \mathbb{F}_{8} is $\mathbb{F}_{2}[\alpha]$. The element α is primitive, and the polynomial $x^{3}+x+1$ is a primitive polynomial.
A.3.15. Example. As we have noted, the polynomial $x^{2}+1$ is irreducible in $\mathbb{F}_{3}[x]$ (as otherwise it would have a root in $\mathbb{F}_{3}=\{0,1,2\}$). Therefore $\mathbb{F}_{3}[x]$ $\left(\bmod x^{2}+1\right)$ is a field; it is a field with nine elements $\mathbb{F}_{9}=\mathbb{F}_{3}+\mathbb{F}_{3}$, where i is a root of $x^{2}+1$ in \mathbb{F}_{9}. Here i is not a primitive element but $1+i$ is.
A.3.3. Existence in all cases. We only need the case $q=p$ of the next Theorem, but no extra work is required to prove the following stronger result.
thm-irred-exist
A.3.11. Corollary. Every finite field F is a copy of $\mathbb{F}_{p}[x](\bmod f(x))$ for some monic irreducible polynomial $f(x) \in \mathbb{F}_{p}[x]$. If $f(x)$ has degree d, then $|F|=p^{d}$.
A.3.12. Theorem. (The converse of Lemma A.3.7.) For every prime p and positive integer d, there is a finite field F with $|F|=p^{d}$.

As we have seen, this is equivalent to proving that there is an irreducible polynomial of degree d in $\mathbb{F}_{p}[x]$ for every d. This is harder to prove. The result follows from Theorem A.3.16 of the next subsection. Here is the idea:

One can view our proof of Proposition A.3.10 as a counting argumentall the elements of $F \backslash\{0\}$ have order at most $q-1$ but $F \backslash\{0\}$ is so big that it is not possible for all of its elements to have order less than $q-1$. A similar (but more complicated) counting argument concerning irreducible polynomials of degree at most d gives this result.
A.3.13. Example. The polynomial $x^{2}+x+1 \in \mathbb{F}_{2}[x]$ is irreducible (as
A.3.16. Theorem. For every finite field \mathbb{F}_{q} and positive integer d, there is an irreducible polynomial in $\mathbb{F}_{q}[x]$ of degree d.

We make use of a sequence of lemmas.
A.3.17. Lemma. Let K be a field containing the subfield \mathbb{F}_{q}. Then the elements of \mathbb{F}_{q} are precisely the roots in K of the polynomial $x^{q}-x \in \mathbb{F}_{q}[x] \leq K[x]$. That $i s, x^{q}-x=\prod_{a \in \mathbb{F}_{q}}(x-a)$.

Proof. By Lemma A.3.9 every nonzero element of \mathbb{F}_{q} is a root of $x^{q-1}-1$, hence each of the q elements of \mathbb{F}_{q} is a root of $x^{q}-x$. The result follows from Proposition A.3.4.

Compare the next lemma with the definition of a primitive polynomial.
A.3.18. Lemma. If $f(x) \in \mathbb{F}_{q}[x]$ is irreducible of degree d, then it divides lem-irred-split-bis $x^{q^{d}}-x$ but does not divide $x^{q^{a}}-x$ for any $a<d$.

Proof. Let α be the image of x in $K=\mathbb{F}_{q^{d}}=\mathbb{F}_{q}[x](\bmod f(x))$, a field by Theorem A.3.1. As $f(\alpha)=0$ in $\mathbb{F}_{q^{d}}$, the irreducible $f(x)$ must be the minimal polynomial of α over \mathbb{F}_{q} (up to a scalar). In particular $f(x)$ divides $x^{q^{d}}-x$.

Suppose $f(x)$ divides $x^{q^{e}}-x$, say $f(x) g(x)=x^{q^{e}}-x$. Then in $\mathbb{F}_{q^{d}}$, we have $\alpha^{q^{e}}-\alpha=f(\alpha) g(\alpha)=0$, so $\alpha^{q^{e}}=\alpha$. Every element b of $\mathbb{F}_{q^{d}}$ can be written uniquely as $b=\sum_{i=0}^{d-1} b_{i} \alpha^{i}$, for certain $b_{i} \in \mathbb{F}_{q}$. By the previous lemma $b_{i}^{q}=b_{i}$, for all i. Then by the Freshman's Dream

$$
\begin{aligned}
b^{q^{e}} & =\left(\sum_{i=0}^{d-1} b_{i} \alpha^{i}\right)^{q^{e}}=\sum_{i=0}^{d-1}\left(b_{i}\right)^{q^{e}}\left(\alpha^{i}\right)^{q^{e}} \\
& =\sum_{i=0}^{d-1} b_{i} \alpha^{i}=b .
\end{aligned}
$$

That is, every $b \in \mathbb{F}_{q^{d}}$ satisfies $b^{q^{e}}-b=0$; and $x^{q^{e}}-x$ has at least q^{d} distinct roots. By Proposition A.3.4 again, $e \geq d$ as claimed.

A.3.19. Lemma. $x^{q^{k}}-x$ is square free.

Proof. We prove this using the formal derivative. Indeed

$$
\operatorname{gcd}\left(x^{q^{k}}-x,\left(x^{q^{k}}-x\right)^{\prime}\right)=\operatorname{gcd}\left(x^{q^{k}}-x,-1\right)=1
$$

so $x^{q^{k}}-x$ is square-free.
Proof of Theorem A.3.16:
Let $F_{d}(x)$ be the product of all distinct monic irreducible polynomials of degree d. Furthermore let $f_{d}(x)$ be the product of all degree d monic irreducible factors of $x^{q^{k}}-x$.

By results A.3.5, A.3.18, and A.3.19, the polynomial $f_{d}(x)$ divides $F_{d}(x)$ and $F_{d}(x)$ divides $x^{q^{d}}-x$. Also by Lemma A.3.18 we have $x^{q^{k}}-x=\prod_{d=1}^{k} f_{d}(x)$. Therefore

$$
\left(x^{q^{k}}-x\right) / f_{k}(x)=\prod_{d=1}^{k-1} f_{d}(x) \quad \text { divides } \prod_{d=1}^{k-1} F_{d}(x)
$$

of degree at most $\sum_{d=1}^{k-1} q^{d}<q^{k}$. We conclude that $f_{k}(x)$ has positive degree, and so $x^{q^{k}}-x$ possesses irreducible factors of degree k, as desired.

