A.3. A Primer on Finite Fields

A.3.1. Recall. We first recall some general results.

Let K be a field and f(x) be a nonconstant polynomial of K[x]. Then f(x) is called *irreducible* in K[x] if every factorization f(x) = a(x)b(x) in K[x] has $\{\deg a, \deg b\} = \{0, \deg f\}$. (This corresponds to prime numbers in \mathbb{Z} .) Otherwise f(x) is *reducible*.

We begin with an important, general result. (It is Theorem A.2.22 of the Algebra Appendix.)

A.3.1. THEOREM. Let $f(x) \in K[x]$ for K a field, with deg $f \ge 1$. Then the ring $K[x] \pmod{f(x)}$ is a field if and only if f(x) is irreducible.

PROOF. Assume that f(x) is irreducible. Everything needed for $K[x] \pmod{f(x)}$ to be a field is clear except for the claim that all nonzero elements have multiplicative inverses.

Suppose that g(x) is not zero in $K[x] \pmod{f(x)}$. That is, suppose that g(x) is not a multiple of f(x). Then gcd(g(x), f(x)) = gcd(r(x), f(x)), where r(x) is the remainder upon division of g(x) by f(x). The polynomial r(x) has degree less than deg f and is nonzero since g(x) is not a multiple of f(x).

Thus gcd(g(x), f(x)) = gcd(r(x), f(x)) is a divisor of f(x) that has degree less than f(x). As f(x) is irreducible, that degree must be 0. Therefore monic gcd(g(x), f(x)) = gcd(r(x), f(x)) = 1. Now by the Extended Euclidean Algorithm, there are s(x) and t(x) in K[x] with s(x)g(x) + t(x)f(x) = 1. That is, $s(x)g(x) = 1 \pmod{f(x)}$, and s(x) is an inverse for g(x) in the field $K[x] \pmod{f(x)}$.

Conversely suppose that f(x) is reducible, and let f(x) = a(x)b(x) be a factorization with $0 < \deg a < \deg f$ and $0 < \deg b < \deg f$. Then in the ring $K[x] \pmod{f(x)}$ the elements a(x) and b(x) are nonzero but have zero product. The ring is therefore not a field.

eg-e2

thm-A.2.22

A.3.2. Examples.

- (i) The polynomial x² + 1 is irreducible in ℝ[x] (as otherwise it would have a root in ℝ). Therefore ℝ[x] (mod x² + 1) is a field. Indeed, it is a copy of the complex numbers ℂ = ℝ + ℝi, where i is a root of x² + 1 in ℂ.
- (ii) The polynomial x² + 1 is irreducible in F₃[x] (as otherwise it would have a root in F₃ = {0,1,2}). Therefore F₃[x] (mod x² + 1) is a field. Indeed, it is a field with nine elements F₉ = F₃ + F₃i, where i is a root of x² + 1 in F₉.
- (iii) The polynomial $x^2 + 1$ is reducible in $\mathbb{F}_5[x]$ since 2 is a root $((x-2)(x+2) = x^2 4 = x^2 + 1)$. Therefore $\mathbb{F}_5[x] \pmod{x^2 + 1}$ is not a field.

Recall Lemma A.2.20:

A.3.3. LEMMA. Let F be a field, and let $p(x), q(x), m(x) \in F[x]$. Suppose m(x) divides the product p(x)q(x) but m(x) and p(x) are relatively prime, gcd(m(x), p(x)) = 1. Then m(x) divides q(x).

Also recall Proposition A.2.10:

prop-E.4 A.3.4. PROPOSITION. Let p(x) be a nonzero polynomial in F[x], F a field, of degree d. Then p(x) has at most d distinct roots in F.

The following consequence will be of help.

lem-helpful-bis A.3.5. LEMMA. In F[x] let $m_i(x)$, for $1 \le i \le k$, be pairwise relatively prime divisors of f(x). Then $\prod_{i=1}^k m_i(x)$ divides f(x).

lem-E.7.5

PROOF. The proof is by induction on k. Write $f(x) = m_1(x)f_1(x)$. Then by Lemma A.3.3 each $m_i(x)$, for $2 \le i \le k$, divides $f_1(x)$. By induction $\prod_{i=2}^k m_i(x)$ divides $f_1(x)$ and so $\prod_{i=1}^k m_i(x)$ divides f(x).

A.3.2. Basics. From now on, F will denote a finite field.

A.3.6. LEMMA. F contains a copy of $\mathbb{Z}_p = \mathbb{F}_p$, for some prime p. (This prime lem-pt1 is called the characteristic of F.)

PROOF. (See Lemma A.1.3.) Consider the apparently infinite subset $\{1, 1+1, 1+1+1, ...\}$ of the finite field F.

A.3.7. LEMMA. There is a positive integer d with $|F| = p^d$. Set $q = |F| = p^d$. lem-pt2

PROOF. (See Problem A.1.6.) From the definitions, F is a vector space over \mathbb{F}_p . Let $\mathbf{e}_1, \ldots, \mathbf{e}_d$ be a basis. Then $F = \left\{ \sum_{i=1}^d a_i \mathbf{e}_i \mid a_1, \ldots, a_d \in \mathbb{F}_p \right\}$. Thus |F| is the number of choices for the a_i , namely p^d .

A.3.8. LEMMA. Let $\alpha \in F \geq \mathbb{F}_p$, and let $m(x) \in \mathbb{F}_p[x]$ be a monic polynomial lem-pt4 of minimal degree with $m(\alpha) = 0$. (It exists since F is finite.) Then m(x) is irreducible and

$$\mathbb{F}_p[\alpha] = \left\{ \left| \sum_{i=0}^k a_i \alpha^i \right| k \ge 0, \ a_i \in \mathbb{F}_p \right\}$$

is a subfield of F that is a copy of $\mathbb{F}_p[x] \pmod{m(x)}$. Its size is p^e where e is the degree of m(x).

PROOF. It is clear that the arithmetic of $\mathbb{F}_p[\alpha]$ is the same as that of $\mathbb{F}_p[x] \pmod{m(x)}$. Especially it has size p^e .

Suppose that m(x) is reducible, and let m(x) = a(x)b(x) be a factorization with $0 < \deg a < \deg m$ and $0 < \deg b < \deg m$. Then $a(\alpha)b(\alpha) = m(\alpha) = 0$. Therefore either $a(\alpha) = 0$ or $b(\alpha) = 0$. But both contradict our choice of m(x) as a nonzero polynomial of minimal degree having α as a root. So m(x) is not reducible and is irreducible. In particular, by Theorem A.2.22, $\mathbb{F}_p[\alpha]$ is a field. \Box

The polynomial m(x) is called the *minimal polynomial* of α over \mathbb{F}_p and is uniquely determined. We sometimes write $m_{\alpha}(x)$ or even $m_{\alpha,\mathbb{F}_p}(x)$ for the minimal polynomial of α over \mathbb{F}_p .

A.3.9. LEMMA. For every β in $F \setminus \{0\}$, the smallest positive h with $\beta^h = 1$ is lem-pt3 a divisor of q - 1. (We write $h = |\beta|$ and call h the order of β .) order

PROOF. Consider the directed graph on $F \setminus \{0\}$ that has an edge directed from a to b precisely when $a\beta = b$. Each connected component of this graph is a directed circuit (cycle). Let H be the component of 1. Then |H| = h. Furthermore, the component containing a is aH. Thus $F \setminus \{0\}$ of size q - 1 is the disjoint union of circuits of size h, and especially h divides q - 1.

A.3.10. PROPOSITION. It is possible to pick the α of Lemma A.3.8 so that prop-pt5 $F = \mathbb{F}_p[\alpha]$. Indeed, it is possible to pick an α with $\alpha^{q-1} = 1$, (where $q = |F| = p^d$) and

$$F = \{0\} \cup \{1, \alpha, \alpha^2, \dots, \alpha^i, \dots, \alpha^{q-2}\}.$$

PROOF. Let $l = \lim_{a \in F^{\times}} (|a|)$. Thus $b^{l} = 1$, for all $b \in F^{\times}$, whereas $b^{q-1} = 1$ by (3); so l = q - 1 by Proposition A.3.4.

minimal polynomial

Let $q-1 = \prod_{i=1}^{k} p_i^{e_i}$ be the factorization of q-1 into distinct prime powers. If a has order $mp_i^{e_i}$, then a^m has order $p_i^{e_i}$. Thus \mathbb{F}_q^{\times} contains an element a_i of order $p_i^{e_i}$ for each i. But then $\alpha = \prod_{i=1}^{k} a_i$ is an element of order q - 1.

An element α with $F = \{0\} \cup \{1, \alpha, \alpha^2, \dots, \alpha^i, \dots, \alpha^{q-2}\}$ is called a *primitive* element in F, and its minimal polynomial $m_{\alpha}(x)$ is a primitive polynomial.

Another way of saying this is that the primitive polynomials of degree d > 1 in $\mathbb{F}_p[x]$ are precisely those irreducible polynomials that divide $x^{p^d-1}-1$ but do not divide $x^m - 1$ for any $m < p^d - 1$.

The previous two results immediately give:

cor-pt6

thm-pt7

A.3.11. COROLLARY. Every finite field F is a copy of $\mathbb{F}_p[x] \pmod{f(x)}$ for some monic irreducible polynomial $f(x) \in \mathbb{F}_p[x]$. If f(x) has degree d, then $|F| = p^{d}$.

A.3.12. THEOREM. (The converse of Lemma A.3.7.) For every prime p and positive integer d, there is a finite field F with $|F| = p^d$.

As we have seen, this is equivalent to proving that there is an irreducible polynomial of degree d in $\mathbb{F}_{p}[x]$ for every d. This is harder to prove. The result follows from Theorem A.3.16 of the next subsection. Here is the idea:

> One can view our proof of Proposition A.3.10 as a counting argument all the elements of $F \setminus \{0\}$ have order at most q - 1 but $F \setminus \{0\}$ is so big that it is not possible for all of its elements to have order less than q-1. A similar (but more complicated) counting argument concerning irreducible polynomials of degree at most d gives this result.

The polynomial $x^2 + x + 1 \in \mathbb{F}_2[x]$ is irreducible (as A.3.13. EXAMPLE. eg-gf4 otherwise it would have a root 0 or 1). Thus $\mathbb{F}_2[x] \pmod{x^2 + x + 1}$ is a field \mathbb{F}_4 with $4 = 2^2$ elements. Let ω be a root of $x^2 + x + 1$. Then \mathbb{F}_4 is $\mathbb{F}_2[\omega] = \{0, 1, \omega, \omega^2 = 0\}$ $1+\omega$. The element ω is primitive, and the polynomial $x^2 + x + 1$ is a primitive polynomial.

A.3.14. EXAMPLE. The polynomial $x^3 + x + 1 \in \mathbb{F}_2[x]$ is irreducible (as eg-gf8 otherwise it would have a root 0 or 1). Thus $\mathbb{F}_2[x] \pmod{x^3 + x + 1}$ is a field \mathbb{F}_8 with $8 = 2^3$ elements. Let α be a root of $x^3 + x + 1$. Then \mathbb{F}_8 is $\mathbb{F}_2[\alpha]$. The element α is primitive, and the polynomial $x^3 + x + 1$ is a primitive polynomial.

As we have noted, the polynomial $x^2 + 1$ is irreducible A.3.15. Example. in $\mathbb{F}_3[x]$ (as otherwise it would have a root in $\mathbb{F}_3 = \{0, 1, 2\}$). Therefore $\mathbb{F}_3[x]$ (mod $x^2 + 1$) is a field; it is a field with nine elements $\mathbb{F}_9 = \mathbb{F}_3 + \mathbb{F}_3 i$, where i is a root of $x^2 + 1$ in \mathbb{F}_9 . Here i is not a primitive element but 1 + i is.

A.3.3. Existence in all cases. We only need the case q = p of the next Theorem, but no extra work is required to prove the following stronger result.

thm-irred-exist

A.3.16. THEOREM. For every finite field \mathbb{F}_q and positive integer d, there is an irreducible polynomial in $\mathbb{F}_{q}[x]$ of degree d.

We make use of a sequence of lemmas.

lem-split-poly-bis

A.3.17. LEMMA. Let K be a field containing the subfield \mathbb{F}_q . Then the elements of \mathbb{F}_q are precisely the roots in K of the polynomial $x^q - x \in \mathbb{F}_q[x] \leq K[x]$. That is, $x^q - x = \prod_{a \in \mathbb{F}_q} (x - a)$.

A.32

eg-gf9

PROOF. By Lemma A.3.9 every nonzero element of \mathbb{F}_q is a root of $x^{q-1} - 1$, hence each of the q elements of \mathbb{F}_q is a root of $x^q - x$. The result follows from Proposition A.3.4.

Compare the next lemma with the definition of a primitive polynomial.

A.3.18. LEMMA. If $f(x) \in \mathbb{F}_q[x]$ is irreducible of degree d, then it divides lem-irred-split-bis $x^{q^{d}} - x$ but does not divide $x^{q^{a}} - x$ for any a < d.

PROOF. Let α be the image of x in $K = \mathbb{F}_{q^d} = \mathbb{F}_q[x] \pmod{f(x)}$, a field by Theorem A.3.1. As $f(\alpha) = 0$ in \mathbb{F}_{q^d} , the irreducible f(x) must be the minimal polynomial of α over \mathbb{F}_q (up to a scalar). In particular f(x) divides $x^{q^d} - x$.

Suppose f(x) divides $x^{q^e} - x$, say $f(x)g(x) = x^{q^e} - x$. Then in \mathbb{F}_{q^d} , we have $\alpha^{q^e} - \alpha = f(\alpha)g(\alpha) = 0$, so $\alpha^{q^e} = \alpha$. Every element b of \mathbb{F}_{q^d} can be written uniquely as $b = \sum_{i=0}^{d-1} b_i \alpha^i$, for certain $b_i \in \mathbb{F}_q$. By the previous lemma $b_i^q = b_i$, for all *i*. Then by the Freshman's Dream

$$b^{q^{e}} = \left(\sum_{i=0}^{d-1} b_{i} \alpha^{i}\right)^{q^{e}} = \sum_{i=0}^{d-1} (b_{i})^{q^{e}} (\alpha^{i})^{q^{e}}$$
$$= \sum_{i=0}^{d-1} b_{i} \alpha^{i} = b.$$

That is, every $b \in \mathbb{F}_{q^d}$ satisfies $b^{q^e} - b = 0$; and $x^{q^e} - x$ has at least q^d distinct roots. By Proposition A.3.4 again, $e \ge d$ as claimed.

A.3.19. LEMMA.
$$x^{q^k} - x$$
 is square free.

PROOF. We prove this using the formal derivative. Indeed

$$gcd(x^{q^k} - x, (x^{q^k} - x)') = gcd(x^{q^k} - x, -1) = 1,$$

so $x^{q^k} - x$ is square-free.

PROOF OF THEOREM A.3.16:

Let $F_d(x)$ be the product of all distinct monic irreducible polynomials of degree d. Furthermore let $f_d(x)$ be the product of all degree d monic irreducible factors of $x^{q^k} - x.$

By results A.3.5, A.3.18, and A.3.19, the polynomial $f_d(x)$ divides $F_d(x)$ and $F_d(x)$ divides $x^{q^d} - x$. Also by Lemma A.3.18 we have $x^{q^k} - x = \prod_{d=1}^k f_d(x)$. Therefore

$$(x^{q^k} - x)/f_k(x) = \prod_{d=1}^{k-1} f_d(x)$$
 divides $\prod_{d=1}^{k-1} F_d(x)$

of degree at most $\sum_{d=1}^{k-1} q^d < q^k$. We conclude that $f_k(x)$ has positive degree, and so $x^{q^k} - x$ possesses irreducible factors of degree k, as desired. lem-square-free-bis