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A.3. A Primer on Finite Fields

A.3.1. Recall. We first recall some general results.
Let K be a field and f(x) be a nonconstant polynomial of K[x]. Then f(x)

is called irreducible in K[x] if every factorization f(x) = a(x)b(x) in K[x] has
{deg a, deg b} = {0, deg f}. (This corresponds to prime numbers in Z.) Otherwise
f(x) is reducible.

We begin with an important, general result. (It is Theorem A.2.22 of the
Algebra Appendix.)

A.3.1. Theorem. Let f(x) ∈ K[x] for K a field, with deg f ≥ 1. Then thethm-A.2.22

ring K[x] (mod f(x)) is a field if and only if f(x) is irreducible.

Proof. Assume that f(x) is irreducible. Everything needed for K[x] (mod f(x)) to be a
field is clear except for the claim that all nonzero elements have multiplicative inverses.

Suppose that g(x) is not zero in K[x] (mod f(x)). That is, suppose that g(x) is not
a multiple of f(x). Then gcd(g(x), f(x)) = gcd(r(x), f(x)), where r(x) is the remainder
upon division of g(x) by f(x). The polynomial r(x) has degree less than deg f and is
nonzero since g(x) is not a multiple of f(x).

Thus gcd(g(x), f(x)) = gcd(r(x), f(x)) is a divisor of f(x) that has degree less than
f(x). As f(x) is irreducible, that degree must be 0. Therefore monic gcd(g(x), f(x)) =
gcd(r(x), f(x)) = 1. Now by the Extended Euclidean Algorithm, there are s(x) and t(x)
in K[x] with s(x)g(x) + t(x)f(x) = 1. That is, s(x)g(x) = 1 (mod f(x)), and s(x) is an
inverse for g(x) in the field K[x] (mod f(x)).

Conversely suppose that f(x) is reducible, and let f(x) = a(x)b(x) be a factorization

with 0 < deg a < deg f and 0 < deg b < deg f . Then in the ring K[x] (mod f(x)) the

elements a(x) and b(x) are nonzero but have zero product. The ring is therefore not a

field. ✷

A.3.2. Examples.eg-e2

(i) The polynomial x2 + 1 is irreducible in R[x] (as otherwise it would have a
root in R). Therefore R[x] (mod x2 + 1) is a field. Indeed, it is a copy of the
complex numbers C = R+ Ri, where i is a root of x2 + 1 in C.

(ii) The polynomial x2 + 1 is irreducible in F3[x] (as otherwise it would have a
root in F3 = {0, 1, 2}). Therefore F3[x] (mod x2 + 1) is a field. Indeed, it is
a field with nine elements F9 = F3 + F3i, where i is a root of x2 + 1 in F9.

(iii) The polynomial x2 +1 is reducible in F5[x] since 2 is a root ((x− 2)(x+2) =
x2 − 4 = x2 + 1). Therefore F5[x] (mod x2 + 1) is not a field.

Recall Lemma A.2.20:

A.3.3. Lemma. Let F be a field, and let p(x), q(x),m(x) ∈ F [x]. Sup-lem-E.7.5

pose m(x) divides the product p(x)q(x) but m(x) and p(x) are relatively prime,
gcd(m(x), p(x)) = 1. Then m(x) divides q(x).

Also recall Proposition A.2.10:

A.3.4. Proposition. Let p(x) be a nonzero polynomial in F [x], F a field, ofprop-E.4

degree d. Then p(x) has at most d distinct roots in F . ✷

The following consequence will be of help.

A.3.5. Lemma. In F [x] let mi(x), for 1 ≤ i ≤ k, be pairwise relatively primelem-helpful-bis

divisors of f(x). Then
�k

i=1 mi(x) divides f(x).
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Proof. The proof is by induction on k. Write f(x) = m1(x)f1(x). Then by Lemma

A.3.3 each mi(x), for 2 ≤ i ≤ k, divides f1(x). By induction
�k

i=2 mi(x) divides f1(x)

and so
�k

i=1 mi(x) divides f(x). ✷

A.3.2. Basics. From now on, F will denote a finite field.

A.3.6. Lemma. F contains a copy of Zp = Fp, for some prime p. (This prime lem-pt1

is called the characteristic of F .)

Proof. (See Lemma A.1.3.) Consider the apparently infinite subset {1 , 1+1 , 1+1+1 , . . . }
of the finite field F . ✷

A.3.7. Lemma. There is a positive integer d with |F | = pd. Set q = |F | = pd. lem-pt2

Proof. (See Problem A.1.6.) From the definitions, F is a vector space over Fp. Let

e1, . . . , ed be a basis. Then F =
� �d

i=1 aiei

��� a1, . . . , ad ∈ Fp

�
. Thus |F | is the number

of choices for the ai, namely pd. ✷

A.3.8. Lemma. Let α ∈ F ≥ Fp, and let m(x) ∈ Fp[x] be a monic polynomial lem-pt4

of minimal degree with m(α) = 0. (It exists since F is finite.) Then m(x) is
irreducible and

Fp[α] =

�
k�

i=0

aiα
i

����� k ≥ 0, ai ∈ Fp

�

is a subfield of F that is a copy of Fp[x] (mod m(x)). Its size is pe where e is the
degree of m(x).

Proof. It is clear that the arithmetic of Fp[α] is the same as that of Fp[x] (mod m(x)).
Especially it has size pe.

Suppose that m(x) is reducible, and let m(x) = a(x)b(x) be a factorization with
0 < deg a < degm and 0 < deg b < degm. Then a(α)b(α) = m(α) = 0. Therefore either
a(α) = 0 or b(α) = 0. But both contradict our choice of m(x) as a nonzero polynomial
of minimal degree having α as a root. So m(x) is not reducible and is irreducible. In
particular, by Theorem A.2.22, Fp[α] is a field. ✷

The polynomial m(x) is called the minimal polynomial of α over Fp and is minimal polynomial

uniquely determined. We sometimes write mα(x) or even mα,Fp
(x) for the minimal

polynomial of α over Fp.

A.3.9. Lemma. For every β in F \ {0}, the smallest positive h with βh = 1 is lem-pt3

a divisor of q − 1. (We write h = |β| and call h the order of β.) order

Proof. Consider the directed graph on F \ {0} that has an edge directed from a to b

precisely when aβ = b. Each connected component of this graph is a directed circuit

(cycle). Let H be the component of 1. Then |H| = h. Furthermore, the component

containing a is aH. Thus F \ {0} of size q − 1 is the disjoint union of circuits of size h,

and especially h divides q − 1. ✷

A.3.10. Proposition. It is possible to pick the α of Lemma A.3.8 so that prop-pt5

F = Fp[α]. Indeed, it is possible to pick an α with αq−1 = 1, (where q = |F | = pd)
and

F = {0} ∪ {1,α,α2, . . . ,αi, . . . ,αq−2} .
Proof. Let l = lcma∈F×

�
|a|

�
. Thus bl = 1, for all b ∈ F×, whereas bq−1 = 1 by (3); so

l = q − 1 by Proposition A.3.4.
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Let q− 1 =
�k

i=1 p
ei
i be the factorization of q− 1 into distinct prime powers. If a has

order mpeii , then am has order peii . Thus F×
q contains an element ai of order p

ei
i for each

i. But then α =
�k

i=1 ai is an element of order q − 1. ✷

An element α with F = {0} ∪ {1,α,α2, . . . ,αi, . . . ,αq−2} is called a primitive
element in F , and its minimal polynomial mα(x) is a primitive polynomial.

Another way of saying this is that the primitive polynomials of degree d > 1 in

Fp[x] are precisely those irreducible polynomials that divide xpd−1 − 1 but do not
divide xm − 1 for any m < pd − 1.

The previous two results immediately give:

A.3.11. Corollary. Every finite field F is a copy of Fp[x] (mod f(x))cor-pt6

for some monic irreducible polynomial f(x) ∈ Fp[x]. If f(x) has degree d, then
|F | = pd. ✷

A.3.12. Theorem. (The converse of Lemma A.3.7.) For every prime p andthm-pt7

positive integer d, there is a finite field F with |F | = pd.

As we have seen, this is equivalent to proving that there is an irreducible polynomial
of degree d in Fp[x] for every d. This is harder to prove. The result follows from Theorem
A.3.16 of the next subsection. Here is the idea:

One can view our proof of Proposition A.3.10 as a counting argument—
all the elements of F \ {0} have order at most q − 1 but F \ {0} is so
big that it is not possible for all of its elements to have order less than
q−1. A similar (but more complicated) counting argument concerning
irreducible polynomials of degree at most d gives this result.

A.3.13. Example. The polynomial x2 + x + 1 ∈ F2[x] is irreducible (aseg-gf4

otherwise it would have a root 0 or 1). Thus F2[x] (mod x2 + x + 1) is a field F4

with 4 = 22 elements. Let ω be a root of x2+x+1. Then F4 is F2[ω] = {0, 1,ω,ω2 =
1 + ω}. The element ω is primitive, and the polynomial x2 + x + 1 is a primitive
polynomial.

A.3.14. Example. The polynomial x3 + x + 1 ∈ F2[x] is irreducible (aseg-gf8

otherwise it would have a root 0 or 1). Thus F2[x] (mod x3 + x + 1) is a field F8

with 8 = 23 elements. Let α be a root of x3+x+1. Then F8 is F2[α]. The element
α is primitive, and the polynomial x3 + x+ 1 is a primitive polynomial.

A.3.15. Example. As we have noted, the polynomial x2 + 1 is irreducibleeg-gf9

in F3[x] (as otherwise it would have a root in F3 = {0, 1, 2}). Therefore F3[x]
(mod x2 + 1) is a field; it is a field with nine elements F9 = F3 + F3i, where i is a
root of x2 + 1 in F9. Here i is not a primitive element but 1 + i is.

A.3.3. Existence in all cases. We only need the case q = p of the next
Theorem, but no extra work is required to prove the following stronger result.

A.3.16. Theorem. For every finite field Fq and positive integer d, there isthm-irred-exist

an irreducible polynomial in Fq[x] of degree d.

We make use of a sequence of lemmas.

A.3.17. Lemma. Let K be a field containing the subfield Fq. Then the elementslem-split-poly-bis

of Fq are precisely the roots in K of the polynomial xq − x ∈ Fq[x] ≤ K[x]. That
is, xq − x =

�
a∈Fq

(x− a).
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Proof. By Lemma A.3.9 every nonzero element of Fq is a root of xq−1 − 1,
hence each of the q elements of Fq is a root of xq − x. The result follows from
Proposition A.3.4. ✷

Compare the next lemma with the definition of a primitive polynomial.

A.3.18. Lemma. If f(x) ∈ Fq[x] is irreducible of degree d, then it divides lem-irred-split-bis

xqd − x but does not divide xqa − x for any a < d.

Proof. Let α be the image of x in K = Fqd = Fq[x] (mod f(x)), a field by
Theorem A.3.1. As f(α) = 0 in Fqd , the irreducible f(x) must be the minimal

polynomial of α over Fq (up to a scalar). In particular f(x) divides xqd − x.

Suppose f(x) divides xqe − x, say f(x)g(x) = xqe − x. Then in Fqd , we have

αqe − α = f(α)g(α) = 0, so αqe = α. Every element b of Fqd can be written

uniquely as b =
�d−1

i=0 biα
i, for certain bi ∈ Fq. By the previous lemma bqi = bi, for

all i. Then by the Freshman’s Dream

bq
e

=

�
d−1�

i=0

biα
i

�qe

=

d−1�

i=0

(bi)
qe(αi)q

e

=

d−1�

i=0

biα
i = b .

That is, every b ∈ Fqd satisfies bq
e − b = 0; and xqe − x has at least qd distinct

roots. By Proposition A.3.4 again, e ≥ d as claimed. ✷

A.3.19. Lemma. xqk − x is square free. lem-square-free-bis

Proof. We prove this using the formal derivative. Indeed

gcd(xqk − x, (xqk − x)�) = gcd(xqk − x,−1) = 1 ,

so xqk − x is square-free. ✷

Proof of Theorem A.3.16:
Let Fd(x) be the product of all distinct monic irreducible polynomials of degree d.
Furthermore let fd(x) be the product of all degree d monic irreducible factors of

xqk − x.
By results A.3.5, A.3.18, and A.3.19, the polynomial fd(x) divides Fd(x) and

Fd(x) divides xqd − x. Also by Lemma A.3.18 we have xqk − x =
�k

d=1 fd(x).
Therefore

(xqk − x)/fk(x) =

k−1�

d=1

fd(x) divides

k−1�

d=1

Fd(x)

of degree at most
�k−1

d=1 q
d < qk. We conclude that fk(x) has positive degree, and

so xqk − x possesses irreducible factors of degree k, as desired. ✷


