Make sure you justify your statements completely and carefully.

1.

(a) Consider an injection φ of \mathbb{F}_4 into \mathbb{F}_2^3 with the property that

 $\varphi(\mathbb{F}_4) = \{001, 110, 010, 101\}.$

Prove that, for any code $C \subseteq \mathbb{F}_4^n$, the corresponding expanded code \hat{C} in \mathbb{F}_2^{3n} has the property that each codeword has no more than three consecutive 0's and no more than three consecutive 1's among its entries. (This is a 'run-length-limited' constraint of the sort that is made for magnetic recording and on compact discs.)

(b) Prove that there are exactly four 4-subsets of \mathbb{F}_2^3 with the property discussed in (a).

2.

- (a) For the linear code C over $F \ge K$, prove that C always contains $F \otimes_K (C|_K)$ but that the containment can be proper.
- (b) For the linear code $D \leq K^n$ over $K \leq F$, prove
 - (i) $\dim_K D = \dim_F (F \otimes_K D)$
 - (ii) $D = (F \otimes_K D)|_K$

3. How many cyclic codes of length 8 over \mathbb{F}_3 are there? Give a generator polynomial for each such code.

4. Prove that there is no cyclic code that is (equivalent to) an [8,4] extended binary Hamming code.

5. Let cyclic code C have generator polynomial g(x). Prove that C is contained in the sum-0 code if and only if g(1) = 0.

6. Give the cyclic generator matrix for the [7,4] binary cyclic code D with generator polynomial $x^3 + x^2 + 1$. Prove that D is a Hamming code.