Make sure you justify your statements completely and carefully.
1.
(a) Consider an injection φ of \mathbb{F}_{4} into \mathbb{F}_{2}^{3} with the property that

$$
\varphi\left(\mathbb{F}_{4}\right)=\{001,110,010,101\}
$$

Prove that, for any code $C \subseteq \mathbb{F}_{4}^{n}$, the corresponding expanded code \hat{C} in $\mathbb{F}_{2}^{3 n}$ has the property that each codeword has no more than three consecutive 0's and no more than three consecutive 1's among its entries. (This is a 'run-length-limited' constraint of the sort that is made for magnetic recording and on compact discs.)
(b) Prove that there are exactly four 4-subsets of \mathbb{F}_{2}^{3} with the property discussed in (a).
2.
(a) For the linear code C over $F \geq K$, prove that C always contains $F \otimes_{K}\left(\left.C\right|_{K}\right)$ but that the containment can be proper.
(b) For the linear code $D \leq K^{n}$ over $K \leq F$, prove
(i) $\operatorname{dim}_{K} D=\operatorname{dim}_{F}\left(F \otimes_{K} D\right)$
(ii) $D=\left.\left(F \otimes_{K} D\right)\right|_{K}$
3. How many cyclic codes of length 8 over \mathbb{F}_{3} are there? Give a generator polynomial for each such code.
4. Prove that there is no cyclic code that is (equivalent to) an $[8,4]$ extended binary Hamming code.
5. Let cyclic code C have generator polynomial $g(x)$. Prove that C is contained in the sum- 0 code if and only if $g(1)=0$.
6. Give the cyclic generator matrix for the $[7,4]$ binary cyclic code D with generator polynomial $x^{3}+x^{2}+1$. Prove that D is a Hamming code.

