Make sure you justify your statements completely and carefully.

1. For the polynomial $p(x)=\sum_{i=0}^{k} p_{i} x^{i} \in F[x]$, define the formal derivative of $p(x)$, denoted $p^{\prime}(x)$, by $p^{\prime}(x)=\sum_{i=1}^{k} i p_{i} x^{i-1}$.
(a) Let $a(x), b(x) \in F[x]$. Prove that $(a(x)+b(x))^{\prime}=a^{\prime}(x)+b^{\prime}(x)$. Prove that $(a(x) b(x))^{\prime}=a(x) b^{\prime}(x)+a^{\prime}(x) b(x)$.
(b) A polynomial $f(x)$ is square free in $F[x]$ if there are no nonconstant polynomials $g(x) \in F[x]$ for which $g(x)^{2}$ divides $f(x)$. Prove that $f(x)$ is square free if $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=1$.
(c) Let $\alpha \in F$ be a root of $p(x) \in F[x]$. Prove that $(x-\alpha)^{2}$ divides $p(x)$ if and only if $x-\alpha$ divides $p^{\prime}(x)$.
2. Problem 5.1.3 from the Notes.
(Hint: The thing to realize initially is that, for a given \mathbf{c}, we can have both $\mathbf{c}=\mathbf{e v}_{\alpha, v}(f(x)) \in \operatorname{GRS}_{n, k}(\boldsymbol{\alpha}, \mathbf{v})$ and $\mathbf{c}=\mathbf{e v}_{\beta, w}(g(x)) \in \operatorname{GRS}_{n, k}(\boldsymbol{\beta}, \mathbf{w})$ for different polynomials $f(x)$ and $g(x)$.)

For the final two problems, 'justifying your statements completely and carefully' means you should show your calculations in enough detail that I can follow them (and can try to locate any mistakes). Please do not do your calculations on a machine. As these two problems are largely computational, I ask that you do not collaborate on them.
3. Problem 5.2.5 from the Notes.
4. Consider the code $\operatorname{GRS}_{10,4}(\boldsymbol{\alpha}, \mathbf{v})$ over \mathbb{F}_{11} that was our classroom example.
(a) Use Euclidean Algorithm decoding to decode the received vector

$$
(0,5,9,0,1,4,5,0,6,0)
$$

(b) Use Euclidean Algorithm decoding to decode the received vector

$$
(1,1,1,1,0,0,0,0,0,0)
$$

