Make sure you justify your statements completely and carefully.

1. Problem 3.1.9 from the Notes.
2. Consider the ternary code E of length 14 composed of those ternary words

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}\right)
$$

that when arranged in an array as

$$
\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & & \\
x_{4} & x_{5} & x_{6} & x_{7} & \\
& x_{8} & x_{9} & x_{10} & x_{11} \\
& & x_{12} & x_{13} & x_{14}
\end{array}
$$

have each row and column summing to 0 .
(a) Prove that E is a linear code.
(b) What is the dimension of E ?
(c) What is the minimum distance of E ?
(d) If the array

$$
\begin{array}{lllll}
0 & 0 & 1 & & \\
0 & 0 & 2 & 0 & \\
& 0 & 0 & 0 & 0 \\
& & 0 & 0 & 0
\end{array}
$$

is received, give all possible decodings subject to MDD. That is, find all codewords (arrays) in E that are closest to this array.
3. Define the Hadamard product

$$
\mathbf{x} * \mathbf{y}=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)
$$

for the vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ of F^{n}. For instance, over \mathbb{F}_{13},

$$
(1,2,3,4) *(2,3,4,5)=(2,6,12,7)
$$

(a) Prove: the dot product $\mathbf{c} \cdot \mathbf{d}$ is the sum of the entries in $\mathbf{c} * \mathbf{d}$, and in particular for binary \mathbf{c} and $\mathbf{d}\left(\right.$ in $\left.\mathbb{F}_{2}^{n}\right)$ we have $\mathbf{c} \cdot \mathbf{d}=\mathrm{w}_{\mathrm{H}}(\mathbf{c} * \mathbf{d})(\bmod 2)$.
(b) Prove that, for vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ in the vector space F^{n} over the field F, we have

$$
\mathrm{w}_{\mathrm{H}}(x+y) \geq \mathrm{w}_{\mathrm{H}}(x)+\mathrm{w}_{\mathrm{H}}(y)-2 \mathrm{w}_{\mathrm{H}}(x * y) .
$$

Prove additionally that, for the binary field $F=\mathbb{F}_{2}$, we have equality:

$$
\mathrm{w}_{\mathrm{H}}(x+y)=\mathrm{w}_{\mathrm{H}}(x)+\mathrm{w}_{\mathrm{H}}(y)-2 \mathrm{w}_{\mathrm{H}}(x * y) .
$$

4. Problem 3.1.11 from the Notes. (Hint: The last part of the previous problem might be of help in part (a).)
5. Problem 3.1.13 from the Notes.
6. (a) Give a syndrome dictionary for the $[8,4]$ binary code C with the following check matrix:

$$
\left[\begin{array}{llllllll}
0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

(b) Use your dictionary to decode the received word:

$$
(1,0,1,0,1,1,0,0)
$$

(c) Use your dictionary to decode the received word:

$$
(0,1,1,1,0,0,0,0)
$$

(d) Use your dictionary to decode the received word:

$$
(1,1,1,0,1,1,0,1)
$$

