You may talk with each other about problems but make sure you write up your solutions separately.

Make sure you explain things carefully.
Some remarks:

1. Most problems that you will get this semester are not very difficult. Please try to solve the problems without looking them up in books, on the net, or whatever.
2. Examples and pictures can be of help in supporting or motivating an argument, but they do not constitute proofs.
3. "I wrote a computer program that said this." is not a valid proof.
4. Statements such as "it is trivial,""it is easy,""by a similar argument," and so forth will be treated with great skepticism.

1. Problem 2.2.3 from the Notes:

http://www.math.msu.edu/~jhall/classes/codenotes/coding-notes.html
2. I have a 1 -error-correcting code code C in $\{0,1\}^{5}$, and I know that there is no other 1-error-correcting code D in $\{0,1\}^{5}$ with $|D|>|C|$.
(a) Use the Sphere Packing Bound and the Gilbert-Varshamov Bound to find a lower and an upper bound on $|C|$.
(b) Give an example of a 1-error-correcting code E in $\{0,1\}^{5}$ with $|E|=|C|$. (Make sure you prove that your code has the largest possible size.)
3. Our Venn/Hamming code (from Class January 13 or Example 1.3.3 on page 12 of the Notes) is an example of 16 binary 7 -tuples that form a 1 -errorcorrecting code. We proved in class that it is impossible to find 16 binary 6 -tuples that form a 1-error-correcting code. Indeed, we saw by the Sphere Packing Condition that a 1 -error-correcting code in $\{0,1\}^{6}$ cannot have size bigger than 9.
(a) Prove that in fact there is no such code of size 9. (Hint: The previous problem may be of some help.)
(b) Find a 1-error-correcting code in $\{0,1\}^{6}$ of size 8. (Hint: Consider the Venn code.)
4. Let \mathbb{P} be a $D M C$ channel with input and output alphabet $A=\{0,1,2,3,4,5\}$ Consider the extended $D M C$ channel $\mathbb{P}^{\otimes n}$ of length n.
(a) Assume that, in addition to $i \mapsto i$, the only typical symbol errors that can occur are

$$
i \mapsto i-1 \quad(\bmod 6) \text { and } i \mapsto i+1 \quad(\bmod 6)
$$

Give a sphere packing bound for codes C in this situation, where $I=O=A^{n}$ and we wish to recover from all typical errors.
(b) Find a code C in $I=A^{n}$ that achieves your bound from (a).

