Make sure you justify your statements completely and carefully.

1. Problem 5.1.3 from the Notes.
(HINT: The thing to realize initially is that, for a given \(c \), we can have both \(c = ev_{\alpha,v}(f(x)) \in GRS_{n,k}(\alpha,v) \) and \(c = ev_{\beta,w}(g(x)) \in GRS_{n,k}(\beta,w) \) for different polynomials \(f(x) \) and \(g(x) \).)

2. Problem A.2.26 from the Appendix 2 of the Notes. Prove first that
\[
(a(x) + b(x))' = a'(x) + b'(x).
\]

3. Problem 5.1.5 from the Notes. In parts (b) and (c) you may assume, for a finite field \(F \) with \(|F| = q \), that the set of all elements of \(F \) is precisely the set of roots of the polynomial \(x^q - x \) and, hence, that the nonzero elements of \(F \) are precisely the roots of the polynomial \(x^{q-1} - 1 \). (We will prove this later in the course.)

4. Let \(C \) and \(D \) be linear codes over the field \(F \) with \(C = D^\perp \). Let \(PC \) be the code \(C \) punctured at its last coordinate position, and let \(SD \) be the code \(D \) shortened at its last coordinate position. Prove that \(PC = SD^\perp \).

Remark. The code \(PC \) is constructed by deleting the last coordinate position from all codewords of \(C \). The code \(SD \) is constructed by first selecting only those codewords of \(D \) that end in 0, and then deleting from these that final 0 position.

For the final two problems, ‘justifying your statements completely and carefully’ means you should show your calculations in enough detail that I can follow them (and can try to locate any mistakes). Please do not do your calculations on a machine. As these two problems are largely computational, I ask that you not collaborate on them.

5. Problem 5.2.5 from the Notes.

6. Consider the code \(GRS_{10,4}(\alpha,v) \) over \(F_{11} \) that was our classroom example.
(a) Use Euclidean Algorithm decoding to decode the received vector
\[
(0,5,9,0,1,4,5,0,6,0).
\]
(b) Use Euclidean Algorithm decoding to decode the received vector
\[
(1,1,1,1,0,0,0,0,0,0).
\]