Make sure you justify your statements completely and carefully.

1. Problem 3.1.8 from the Notes.

2. Problem 3.1.9 from the Notes.

3. Define the Hadamard product \(x \ast y \) for the vectors \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \) of \(F^n \). For instance, over \(F_{13} \),
\[
(1, 2, 3, 4) \ast (2, 3, 4, 5) = (2, 6, 12, 7).
\]

 (a) Prove: the dot product \(c \cdot d \) is the sum of the entries in \(c \ast d \), and in particular for binary \(c \) and \(d \) (in \(F_2^n \)) we have \(c \cdot d = w_H(c \ast d) \) (mod 2).

 (b) Prove that, for vectors \(x = (x_1, \ldots, x_n) \), \(y = (y_1, \ldots, y_n) \) in the vector space \(F^n \) over the field \(F \), we have
\[
w_H(x + y) \geq w_H(x) + w_H(y) - 2w_H(x \ast y).
\]

 Prove additionally that, for the binary field \(F = F_2 \), we have equality:
\[
w_H(x + y) = w_H(x) + w_H(y) - 2w_H(x \ast y).
\]

4. Problem 3.1.11 from the Notes. (Hint: The last part of the previous problem might be of help in part (a).)

5. (a) Give a syndrome dictionary for the \([8, 4]\) binary code \(C \) with the following check matrix:
\[
\begin{bmatrix}
0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1
\end{bmatrix}
\]

 (b) Use your dictionary to decode the received word:
\[
(1, 0, 1, 0, 1, 0, 0, 0).
\]

 (c) Use your dictionary to decode the received word:
\[
(0, 1, 1, 1, 0, 0, 0, 0).
\]

 (d) Use your dictionary to decode the received word:
\[
(1, 1, 1, 0, 1, 0, 1, 0).
\]

6. Problem 4.1.5 from the Notes.

7. Problem 4.1.8 from the Notes.