There are several theoretical results of importance for our Euclidean Algorithm based decoding of GRS codes.

Appendix:

(2.16) THEOREM. In F[x], F a field, let a(x) and b(x) be two polynomials not both equal to 0. Then there is a unique monic polynomial g(x) in F[x] such that:

(i) a(x) and b(x) are multiples of g(x);

(ii) if n(x) divides both a(x) and b(x) then g(x) is a multiple of n(x).

Indeed g(x) is the unique monic polynomial of minimal degree in the set

$$G = \{ s(x)a(x) + t(x)b(x) \mid s(x), t(x) \in F[x] \}.$$

Chapter 5:

(2.2) THEOREM. Given r and $S(z) \in F[z]$ there is at most one pair of polynomials $\sigma(z), \omega(z)$ in F[z] satisfying:

(1) $\sigma(z)S(z) = \omega(z) \pmod{z^r};$ (2) $\deg(\sigma(z)) \le r/2 \text{ and } \deg(\omega(z)) < r/2;$

(3) $gcd(\sigma(z), \omega(z)) = 1 \text{ and } \sigma(0) = 1.$

Appendix:

(3.1) THEOREM. (THE EUCLIDEAN ALGORITHM.) Assume that $\deg(a(x)) \ge \deg(b(x))$ with $a(x) \ne 0$. At Step i we construct the equation

$$\mathbf{E}_{\mathbf{i}}: r_i(x) = s_i(x)a(x) + t_i(x)b(x).$$

Equation $\mathbf{E_i}$ is constructed from $\mathbf{E_{i-1}}$ and $\mathbf{E_{i-2}}$, the appropriate initialization being provided by (4) and (5):

$$\begin{aligned} r_{-1}(x) &= a(x); \quad s_{-1}(x) = 1; \quad t_{-1}(x) = 0; \\ r_0(x) &= b(x); \quad s_0(x) = 0; \quad t_0(x) = 1. \end{aligned}$$

Step i. Starting with $r_{i-2}(x)$ and $r_{i-1}(x) \neq 0$ use the Division Algorithm A.2.5 to define $q_i(x)$ and $r_i(x)$:

$$r_{i-2}(x) = q_i(x)r_{i-1}(x) + r_i(x)$$
 with $\deg(r_i(x)) < \deg(r_{i-1}(x))$.

Next define $s_i(x)$ and $t_i(x)$ by:

$$s_i(x) = s_{i-2}(x) - q_i(x)s_{i-1}(x);$$

$$t_i(x) = t_{i-2}(x) - q_i(x)t_{i-1}(x).$$

We then have the equation

$$\mathbf{E}_{\mathbf{i}}: r_i(x) = s_i(x)a(x) + t_i(x)b(x).$$

Begin with i = 0. If we have $r_i(x) \neq 0$, then proceed to Step i+1. Eventually there will be an i with $r_i(x) = 0$. At that point halt and declare gcd(a(x), b(x)) to be the unique monic scalar multiple of the nonzero polynomial $r_{i-1}(x)$.

Chapter 5:

(2.4) THEOREM. (DECODING GRS USING THE EUCLIDEAN ALGORITHM.) Consider the code $GRS_{n,k}(\alpha, \mathbf{v})$ over F, and set r = n-k. Given a syndrome polynomial S(z) (of degree less than r), the following algorithm halts, producing polynomials $\tilde{\sigma}(z)$ and $\tilde{\omega}(z)$:

> Set $a(z) = z^r$ and b(z) = S(z). Step through the Euclidean Algorithm A.3.1 until at Step j, $\deg(r_j(z)) < r/2$. Set $\tilde{\sigma}(z) = t_j(z)$ and $\tilde{\omega}(z) = r_j(z)$.

If there is an error word \mathbf{e} of weight at most $r/2 = (d_{min} - 1)/2$ with $S_{\mathbf{e}}(z) = S(z)$, then $\widehat{\sigma}(z) = \widetilde{\sigma}(0)^{-1}\widetilde{\sigma}(z)$ and $\widehat{\omega}(z) = \widetilde{\sigma}(0)^{-1}\widetilde{\omega}(z)$ are the error locator and evaluator polynomials for \mathbf{e} .

Given the polynomials $\sigma(z) = \sigma_{\mathbf{e}}(z)$ and $\omega(z) = \omega_{\mathbf{e}}(z)$, we can reconstruct the error vector \mathbf{e} . We assume that none of the α_i are equal to 0. Then:

$$B = \{ b \, | \, \sigma(\alpha_b^{-1}) = 0 \}$$

and, for each $b \in B$,

$$e_b = \frac{-\alpha_b \omega(\alpha_b^{-1})}{u_b \sigma'(\alpha_b^{-1})} ,$$

where $\sigma'(z)$ is the formal derivative of $\sigma(z)$.