There are several theoretical results of importance for our Euclidean Algorithm based decoding of GRS codes.

Appendix:

(2.16) Theorem. In $F[x], F$ a field, let $a(x)$ and $b(x)$ be two polynomials not both equal to 0 . Then there is a unique monic polynomial $g(x)$ in $F[x]$ such that:
(i) $a(x)$ and $b(x)$ are multiples of $g(x)$;
(ii) if $n(x)$ divides both $a(x)$ and $b(x)$ then $g(x)$ is a multiple of $n(x)$.

Indeed $g(x)$ is the unique monic polynomial of minimal degree in the set

$$
G=\{s(x) a(x)+t(x) b(x) \mid s(x), t(x) \in F[x]\} .
$$

Chapter 5:

(2.2) Theorem. Given r and $S(z) \in F[z]$ there is at most one pair of polynomials $\sigma(z), \omega(z)$ in $F[z]$ satisfying:
(1) $\sigma(z) S(z)=\omega(z)\left(\bmod z^{r}\right)$;
(2) $\operatorname{deg}(\sigma(z)) \leq r / 2$ and $\operatorname{deg}(\omega(z))<r / 2$;
(3) $\operatorname{gcd}(\sigma(z), \omega(z))=1$ and $\sigma(0)=1$.

Appendix:

(3.1) Theorem. (The Euclidean Algorithm.)

Assume that $\operatorname{deg}(a(x)) \geq \operatorname{deg}(b(x))$ with $a(x) \neq 0$. At Step i we construct the equation

$$
\mathbf{E}_{\mathbf{i}}: r_{i}(x)=s_{i}(x) a(x)+t_{i}(x) b(x) .
$$

Equation $\mathbf{E}_{\mathbf{i}}$ is constructed from $\mathbf{E}_{\mathbf{i}-\mathbf{1}}$ and $\mathbf{E}_{\mathbf{i}-\mathbf{2}}$, the appropriate initialization being provided by (4) and (5):

$$
\begin{aligned}
& r_{-1}(x)=a(x) ; \quad s_{-1}(x)=1 ; \quad t_{-1}(x)=0 ; \\
& r_{0}(x)=b(x) ; \quad s_{0}(x)=0 ; \quad t_{0}(x)=1 .
\end{aligned}
$$

Step i. Starting with $r_{i-2}(x)$ and $r_{i-1}(x)(\neq 0)$ use the Division Algorithm A.2.5 to define $q_{i}(x)$ and $r_{i}(x)$:
$r_{i-2}(x)=q_{i}(x) r_{i-1}(x)+r_{i}(x)$ with $\operatorname{deg}\left(r_{i}(x)\right)<\operatorname{deg}\left(r_{i-1}(x)\right)$.
Next define $s_{i}(x)$ and $t_{i}(x)$ by:

$$
\begin{aligned}
s_{i}(x) & =s_{i-2}(x)-q_{i}(x) s_{i-1}(x) ; \\
t_{i}(x) & =t_{i-2}(x)-q_{i}(x) t_{i-1}(x) .
\end{aligned}
$$

We then have the equation

$$
\mathbf{E}_{\mathbf{i}}: r_{i}(x)=s_{i}(x) a(x)+t_{i}(x) b(x) .
$$

Begin with $i=0$. If we have $r_{i}(x) \neq 0$, then proceed to Step $i+1$. Eventually there will be an i with $r_{i}(x)=0$. At that point halt and declare $\operatorname{gcd}(a(x), b(x))$ to be the unique monic scalar multiple of the nonzero polynomial $r_{i-1}(x)$.

Chapter 5:

(2.4) Theorem. (Decoding $G R S$ using the Euclidean Algorithm.) Consider the code $G R S_{n, k}(\boldsymbol{\alpha}, \mathbf{v})$ over F, and set $r=n-k$. Given a syndrome polynomial $S(z)$ (of degree less than r), the following algorithm halts, producing polynomials $\tilde{\sigma}(z)$ and $\tilde{\omega}(z)$:

$$
\begin{aligned}
& \text { Set } a(z)=z^{r} \text { and } b(z)=S(z) . \\
& \text { Step through the Euclidean Algorithm A.3.1 } \\
& \quad \text { until at Step } j, \operatorname{deg}\left(r_{j}(z)\right)<r / 2 . \\
& \text { Set } \tilde{\sigma}(z)=t_{j}(z) \\
& \text { and } \tilde{\omega}(z)=r_{j}(z) \text {. }
\end{aligned}
$$

If there is an error word \mathbf{e} of weight at most $r / 2=\left(d_{\text {min }}-1\right) / 2$ with $S_{\mathbf{e}}(z)=S(z)$, then $\widehat{\sigma}(z)=\tilde{\sigma}(0)^{-1} \tilde{\sigma}(z)$ and $\widehat{\omega}(z)=\tilde{\sigma}(0)^{-1} \tilde{\omega}(z)$ are the error locator and evaluator polynomials for \mathbf{e}.

Given the polynomials $\sigma(z)=\sigma_{\mathbf{e}}(z)$ and $\omega(z)=\omega_{\mathbf{e}}(z)$, we can reconstruct the error vector \mathbf{e}. We assume that none of the α_{i} are equal to 0 . Then:

$$
B=\left\{b \mid \sigma\left(\alpha_{b}^{-1}\right)=0\right\}
$$

and, for each $b \in B$,

$$
e_{b}=\frac{-\alpha_{b} \omega\left(\alpha_{b}^{-1}\right)}{u_{b} \sigma^{\prime}\left(\alpha_{b}^{-1}\right)},
$$

where $\sigma^{\prime}(z)$ is the formal derivative of $\sigma(z)$.

