Make sure you justify all your answers appropriately.

Throughout this assignment:

For the odd prime p, χ is the function on \mathbb{F}_p that is 0 at 0, +1 on nonzero squares, and -1 on nonsquares. The related function χ^+ agrees with χ on the nonzero elements of \mathbb{F}_p but has $\chi^+(0) = +1$.

The associated Legendre sequence is the sequence $L^p = (w_0, w_1, \ldots, w_{p-1})$ with $w_i = \chi^+(i)$.

For a sequence $\mathbf{w} = (w_0, \ldots, w_i, \ldots, w_{m-1})$ and a k-tuple $\mathbf{a} = (a_0, \ldots, a_{k-1})$, the function $K^{\mathbf{a}}(\mathbf{w})$ counts the number of times **a** occurs cyclically within **w**. That is, $K^{\mathbf{a}}(\mathbf{w})$ is the number of distinct i with $0 \le i \le i$ m-1 and

$$(w_i, w_{i+1}, \ldots, w_{i+k-1}) = (a_0, a_1, \ldots, a_{k-1}),$$

where subscripts are read modulo m.

- 1. (a) Write down the Legendre sequence $\mathbf{w} = L^{11}$.
- (b) For each $\mathbf{a} \in \{\pm 1\}^1$ calculate $K^{\mathbf{a}}(\mathbf{w})$. (c) For each $\mathbf{a} \in \{\pm 1\}^2$ calculate $K^{\mathbf{a}}(\mathbf{w})$.
- (d) For each $\mathbf{a} \in \{\pm 1\}^3$ calculate $K^{\mathbf{a}}(\mathbf{w})$.

2. (a) Write down the Legendre sequence $\mathbf{w} = L^{13}$.

- (b) For each $\mathbf{a} \in \{\pm 1\}^1$ calculate $K^{\mathbf{a}}(\mathbf{w})$.
- (c) For each $\mathbf{a} \in \{\pm 1\}^2$ calculate $K^{\mathbf{a}}(\mathbf{w})$.
- (d) For each $\mathbf{a} \in \{\pm 1\}^3$ calculate $K^{\mathbf{a}}(\mathbf{w})$.

3. Based on the previous two problems, what can you say about k-tuple optimality for the Legendre sequences L^p for p = 11, 13? What is your guess about the behaviour for arbitrary primes?

4. For the sequence $\mathbf{w} = (w_0, \ldots, w_i, \ldots, w_{m-1})$ the periodic autocorrelation function $C^{\mathbf{w}}(j)$, with $0 \leq j \leq j$ m-1, is given by

$$C^{\mathbf{w}}(j) = \sum_{i=0}^{m-1} w_i w_{i+j},$$

where subscripts are read modulo m.

For **w** the Legendre sequence L^{13} and each j with $0 \le j \le 12$, calculate $C^{\mathbf{w}}(j)$.

5. Use the squares and nonsquares in \mathbb{F}_{11} to construct a 12×12 Hadamard matrix.

(Continued on other side)

6. (Hadamard matrices of side 2(q+1) for $q \equiv 1 \pmod{4}$.)

We now consider the case where there is a finite field \mathbb{F}_q containing q elements with $q \equiv 1 \pmod{4}$. We know that $\mathbb{F}_p = \mathbb{Z}_p$ is an example for every prime $p = q \equiv 1 \pmod{4}$.

- Let C be the $q + 1 \times q + 1$ matrix indexed by $\infty \cup \mathbb{F}_q$ that has
- 0 in position (∞, ∞) ,
- \bullet +1's in all nondiagonal positions in column and row $\infty,$ and
- $\chi(c-r)$ in position (r,c) for $r,c \in \mathbb{F}_q$.

For example, with p = q = 5, we have

	∞	0	1	2	3	4
∞	0	+1	+1	+1	+1	+1
0	+1	0	+1	-1	$^{-1}$	+1
1	+1	+1	0	+1	-1	-1
2	+1	-1	+1	0	+1	-1
3	+1	-1	-1	+1	0	+1
4	+1	+1	-1	-1	+1	0

(a) Prove that C is a symmetric matrix with $CC = CC^{\top} = qI$, where I is the $q + 1 \times q + 1$ identity matrix. (Recall that we have proven that -1 is a square in \mathbb{F}_q when $q \equiv 1 \pmod{4}$.)

(b) Prove that

$$\left[\begin{array}{rrr} I+C & -I+C \\ -I+C & -I-C \end{array}\right]$$

is a $2(q+1)\times 2(q+1)$ Hadamard matrix.