Make sure you justify all your answers appropriately.

Throughout this assignment:
For the odd prime p, χ is the function on \mathbb{F}_{p} that is 0 at $0,+1$ on nonzero squares, and -1 on nonsquares. The related function χ^{+}agrees with χ on the nonzero elements of \mathbb{F}_{p} but has $\chi^{+}(0)=+1$.

The associated Legendre sequence is the sequence $L^{p}=\left(w_{0}, w_{1}, \ldots, w_{p-1}\right)$ with $w_{i}=\chi^{+}(i)$.
For a sequence $\mathbf{w}=\left(w_{0}, \ldots, w_{i}, \ldots, w_{m-1}\right)$ and a k-tuple $\mathbf{a}=\left(a_{0}, \ldots, a_{k-1}\right)$, the function $K^{\mathbf{a}}(\mathbf{w})$ counts the number of times a occurs cyclically within \mathbf{w}. That is, $K^{\mathbf{a}}(\mathbf{w})$ is the number of distinct i with $0 \leq i \leq$ $m-1$ and

$$
\left(w_{i}, w_{i+1}, \ldots, w_{i+k-1}\right)=\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)
$$

where subscripts are read modulo m.

1. (a) Write down the Legendre sequence $\mathbf{w}=L^{11}$.
(b) For each $\mathbf{a} \in\{ \pm 1\}^{1}$ calculate $K^{\mathbf{a}}(\mathbf{w})$.
(c) For each $\mathbf{a} \in\{ \pm 1\}^{2}$ calculate $K^{\mathbf{a}}(\mathbf{w})$.
(d) For each $\mathbf{a} \in\{ \pm 1\}^{3}$ calculate $K^{\mathbf{a}}(\mathbf{w})$.
2. (a) Write down the Legendre sequence $\mathbf{w}=L^{13}$.
(b) For each $\mathbf{a} \in\{ \pm 1\}^{1}$ calculate $K^{\mathbf{a}}(\mathbf{w})$.
(c) For each $\mathbf{a} \in\{ \pm 1\}^{2}$ calculate $K^{\mathbf{a}}(\mathbf{w})$.
(d) For each $\mathbf{a} \in\{ \pm 1\}^{3}$ calculate $K^{\mathbf{a}}(\mathbf{w})$.
3. Based on the previous two problems, what can you say about k-tuple optimality for the Legendre sequences L^{p} for $p=11,13$? What is your guess about the behaviour for arbitrary primes?
4. For the sequence $\mathbf{w}=\left(w_{0}, \ldots, w_{i}, \ldots, w_{m-1}\right)$ the periodic autocorrelation function $C^{\mathbf{w}}(j)$, with $0 \leq j \leq$ $m-1$, is given by

$$
C^{\mathbf{w}}(j)=\sum_{i=0}^{m-1} w_{i} w_{i+j}
$$

where subscripts are read modulo m.
For \mathbf{w} the Legendre sequence L^{13} and each j with $0 \leq j \leq 12$, calculate $C^{\mathbf{w}}(j)$.
5. Use the squares and nonsquares in \mathbb{F}_{11} to construct a 12×12 Hadamard matrix.

(Continued on other side)

6. (HADAMARD MATRICES OF SIDE $2(q+1)$ FOR $q \equiv 1(\bmod 4)$.)

We now consider the case where there is a finite field \mathbb{F}_{q} containing q elements with $q \equiv 1(\bmod 4)$. We know that $\mathbb{F}_{p}=\mathbb{Z}_{p}$ is an example for every prime $p=q \equiv 1(\bmod 4)$.

Let C be the $q+1 \times q+1$ matrix indexed by $\infty \cup \mathbb{F}_{q}$ that has

- 0 in position (∞, ∞),
- +1 's in all nondiagonal positions in column and row ∞, and
- $\chi(c-r)$ in position (r, c) for $r, c \in \mathbb{F}_{q}$.

For example, with $p=q=5$, we have

	∞	0	1	2	3	4
∞	0	+1	+1	+1	+1	+1
0	+1	0	+1	-1	-1	+1
1	+1	+1	0	+1	-1	-1
2	+1	-1	+1	0	+1	-1
3	+1	-1	-1	+1	0	+1
4	+1	+1	-1	-1	+1	0

(a) Prove that C is a symmetric matrix with $C C=C C^{\top}=q I$, where I is the $q+1 \times q+1$ identity matrix. (Recall that we have proven that -1 is a square in \mathbb{F}_{q} when $q \equiv 1(\bmod 4)$.)
(b) Prove that

$$
\left[\begin{array}{rr}
I+C & -I+C \\
-I+C & -I-C
\end{array}\right]
$$

is a $2(q+1) \times 2(q+1)$ Hadamard matrix.

