All answers must be justified appropriately.

1. (Randomness and the second harmonic) Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \pm 1^{n}$ be a ± 1-sequence of length n.

Consider a fixed position k, with $1 \leq k \leq n$. The second harmonic at k, a random variable $S H_{k}$ on $\pm 1^{n}$, is given by

$$
S H_{k}(\mathbf{x})=\sum_{i=1}^{n} x_{k-i} x_{k+i}
$$

where, in order for this to make sense, we set $x_{j}=0$ for $j<1$ and $j>n$. For example, with $n=9$ we have

$$
S H_{3}(\mathbf{x})=x_{2} x_{4}+x_{1} x_{5}
$$

and

$$
S H_{6}(\mathbf{x})=x_{5} x_{7}+x_{4} x_{8}+x_{3} x_{9} .
$$

Since each $S H_{k}$ is a quadratic form, we saw in class that, for all n and all k, we have $\mathbf{E}\left(S H_{k}\right)=0$.
(a) Prove that, if $n>2$, then there is no sequence $\mathbf{x} \in \pm 1^{n}$ with $S H_{k}(\mathbf{x})=0$, for all k. (That is, $S H$-perfect sequences do not exist.)
(b) Call the sequence $\mathbf{x} S H$-optimal if $\left|S H_{k}(\mathbf{x})\right| \leq 1$, for all k. Prove that the length n sequence

$$
(+1+1-1-1+1+1-1-1+1+1-1-1 \ldots)
$$

(alternating $+1+1$ and $-1-1$) is $S H$-optimal.
REMARK. In particular, pseudorandom sequences might not be very random at all. This problem actually came up in some work done by chemists here at MSU.
2. (k-TUPle expectation for the biased coin) Consider $\{H, T\}^{n}$, length n Bernoulli sequences w of n flips with a biased coin. $(\mathbf{P}(H)=p, \mathbf{P}(T)=q)$

For the k-tuple $\mathbf{x} \in\{H, T\}^{k}$, let the random variable $K^{\mathbf{x}}$ evaluated at the sequence $w \in\{H, T\}^{n}$ count the number of times that the k-tuple \mathbf{x} appears in consecutive positions in w, read cyclically. For instance,
$K^{H T T}(T H T T H T H T)=2$ because of $T \mathbf{H T T H T H T}$ and THTTHTHT.
Find, for each k, n, and $\mathbf{x} \in\{H, T\}^{k}$, the expected value $E\left(K^{\mathbf{x}}\right)$. (Make sure you justify your answer.)
(Hint: This should involve the function $h(\mathbf{x})$ which counts the number of heads in x .)
3. (Some DeBruijn type sequences.) For this problem and the next, not only list the sequences but explain why these are the only ones. (Do not just grind these out with a computer.) You need only list one from each cycle class.

Find all binary 8 -tuples in which each 2 -tuple $00,01,10$, and 11 appears (cyclically) exactly twice. (This is the 2-tuple perfect property for length 8.)

Recall: All answers must be justified appropriately.
4. (Further DeBruijn type sequences.) Following the same instructions as in the previous problem, find all 9-tuples of $\{H, T\}^{9}$ in which (cyclically) $H H$ appears 4 times, $H T$ appears twice, $T H$ appears twice, and $T T$ appears once. Remark. This is related to Problem 2 for the biased coin with $p=2 / 3$.

Recall: All answers must be justified appropriately.

