All answers must be justified appropriately.

1. (RANDOMNESS AND THE SECOND HARMONIC) Let $\mathbf{x} = (x_1, \ldots, x_n) \in \pm 1^n$ be a ± 1 -sequence of length n.

Consider a fixed position k, with $1 \le k \le n$. The second harmonic at k, a random variable SH_k on $\pm 1^n$, is given by

$$SH_k(\mathbf{x}) = \sum_{i=1}^n x_{k-i} x_{k+i} \,,$$

where, in order for this to make sense, we set $x_j = 0$ for j < 1 and j > n. For example, with n = 9 we have

$$SH_3(\mathbf{x}) = x_2x_4 + x_1x_5$$

and

$$SH_6(\mathbf{x}) = x_5x_7 + x_4x_8 + x_3x_9$$

Since each SH_k is a quadratic form, we saw in class that, for all n and all k, we have $\mathbf{E}(SH_k) = 0$.

(a) Prove that, if n > 2, then there is no sequence $\mathbf{x} \in \pm 1^n$ with $SH_k(\mathbf{x}) = 0$, for all k. (That is, SH-perfect sequences do not exist.)

(b) Call the sequence \mathbf{x} SH-optimal if $|SH_k(\mathbf{x})| \leq 1$, for all k. Prove that the length n sequence

(alternating +1 + 1 and -1 - 1) is SH-optimal.

REMARK. In particular, pseudorandom sequences might not be very random at all. This problem actually came up in some work done by chemists here at MSU.

2. (k-TUPLE EXPECTATION FOR THE BIASED COIN) Consider $\{H, T\}^n$, length *n* Bernoulli sequences *w* of *n* flips with a biased coin. ($\mathbf{P}(H) = p, \mathbf{P}(T) = q$)

For the k-tuple $\mathbf{x} \in \{H, T\}^k$, let the random variable $K^{\mathbf{x}}$ evaluated at the sequence $w \in \{H, T\}^n$ count the number of times that the k-tuple \mathbf{x} appears in consecutive positions in w, read cyclically. For instance,

$$K^{HTT}(THTTHTHT) = 2$$
 because of $THTTHTHT$ and $THTTHTHT$.

Find, for each k, n, and $\mathbf{x} \in \{H, T\}^k$, the expected value $E(K^{\mathbf{x}})$. (Make sure you justify your answer.)

(HINT: This should involve the function $h(\mathbf{x})$ which counts the number of heads in \mathbf{x} .)

3. (SOME DEBRUIJN TYPE SEQUENCES.) For this problem and the next, not only list the sequences but explain why these are the only ones. (Do not just grind these out with a computer.) You need only list one from each cycle class. Find all binary 8-tuples in which each 2-tuple 00, 01, 10, and 11 appears (cyclically) exactly twice. (This is the 2-tuple perfect property for length 8.)

Recall: All answers must be justified appropriately.

4. (FURTHER DEBRUIJN TYPE SEQUENCES.) Following the same instructions as in the previous problem, find all 9-tuples of $\{H, T\}^9$ in which (cyclically) HHappears 4 times, HT appears twice, TH appears twice, and TT appears once. REMARK. This is related to Problem 2 for the biased coin with p = 2/3.

Recall: All answers must be justified appropriately.