
A supplement to Treil

JIH

Version of: 13 April 2016

Throughout we use Treil to identify our text notes:

Sergei Treil, Linear Algebra Done Wrong (9/7/2015 version),
https://www.math.brown.edu/∼treil/papers/LADW/book.pdf

As the title suggests, these notes are meant to supplement Treil rather than
replace it. (In particular, these notes contain few examples.)

Throughout, when we refer to result (Theorem, Exercise, etc.) a.b.c of Treil,
we mean result (Theorem, Exercise, etc.) b.c of Chapter a in Treil.
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0 Chapter 0: Background

0.1 Sets and systems

We assume familiarity with the basics of set theory.
Given a set X, we will often discuss collections of its elements that are

ordered and have repeated elements allowed. For instance

S,M, T,W, T, F, S

is such a collection of capital letters corresponding to the days of the week in
the usual order.

Such a collection is formally an ordered multiset, but we will never use this
term again. There are various names that can be used—for instance, sequence,
list, string, and word. Treil’s preferred term is system; we shall keep to that,
although we may also use n-tuple, when we want to emphasize that the system
has exactly n entries; the example above is a 7-tuple of capital letters.

We usually write the system as above, separated by commas. We may also
delimit it to avoid confusion, for instance when we need to give the system a
name:

D = [[S,M, T,W, T, F, S]]

or
D = (S,M, T,W, T, F, S) .

This last notation is particularly helpful when we we wish to think of the system
as a row vector with entries from X.

Systems are typically indexed by some subset of the integers:

B = [[b1, . . . ,bj , . . . ,bn]] = [[bj , 1 ≤ j ≤ n]] .

The number of elements n in a system (n-tuple) is its length or its size.
An ordered set is a special sort of system—one in which none of its elements

is repeated in the system. Both [[T, i, g, e, r, s]] and [[Y, a, n, k, e, e]] are systems
with six elements, but only the first is an ordered set. As e is repeated in the
second system, it is not an ordered set.

To each system X = [[x1, . . . , xj , . . . , xn]] there is a unique associated set
{X} = {xj | 1 ≤ j ≤ n }. Its cardinality is at most n, equality occurring
precisely when X is an ordered set. Conversely, to each set Y = { yi | 1 ≤ i ≤
m } (with yi 6= yj for i 6= j) there are m! systems Y with {Y} = Y .

Subsets of sets are familiar. There is a related concept for systems. If

B = [[b1, . . . ,bj , . . . ,bn]] = [[bj , 1 ≤ j ≤ n]] .

is a system of length m, then a subsystem C is a system of length m (≤ n)

C = [[bc1 , . . . ,bci , . . . ,bcm ]] = [[bci , 1 ≤ i ≤ m]] .
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with ci < ci+1 ≤ n for 1 ≤ i < m. We continue with the set theoretic notation,
writing C ⊆ B. If A = [[a1, . . . , am]] and B = [[b1, . . . , bn]] are systems of lengths
m and n respectively, then we can concatenate them to get the new system

A ∪ B = [[a1, . . . , am, b1, . . . , bn]]

of length m+ n. We then have {A ∪ B} = {C} = {A} ∪ {B}.

0.2 Mappings and functions

Given two sets A and B, a function, map, transformation, or operator f from A
to B is something that associates to each member a of A (the domain) exactly
one member b of B (the target or codomain). In notation,

the function f : A −→ B is given by f(a) = b or a 7→ b .

The four names—function, map, transformation, and operator—for us mean the
same thing. By convention different versions are used in different situations for
various reasons.1 For instance, we often use the term ‘map’ when no additional
restrictions have been made.

The range (or image)

Ran f = { b | b = f(a), some a ∈ A }

is a subset of B but need not be all of B. While each a ∈ A gives rise to a
unique b = f(a) ∈ B, for a given b ∈ B there may be no a ∈ A with f(a) = b or
many. (We will return to these issues in the next subsection.)

Given two functions f : A −→ B and g : B −→ C their composition is the
function gf : A −→ C given by

gf(a) = g(f(a))

for all a ∈ A. The process can be iterated: if h : C −→ D is a third function,
then we have the composition hgf : A −→ D given by

hgf(a) = h(g(f(a))) .

Composition of functions is associative:

(hg)f = hgf = h(gf) .

For each set X an important map (function) from X to itself is the identity
map

IdX : X −→ X

given by
IdX(x) = x

for every x ∈ X. If r : X −→ Y and l : Y −→ X with lr = IdX , then r is a right
inverse for l and l is a left inverse for r.

1So Treil uses the term ‘linear operator’ for vector space maps because his training is
that of an analyst, while I am trained as an algebraist and am more likely to use ‘linear
transformation’ in the same situation. They mean the same thing.
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(0.1). Lemma. If t : A −→ B has a left inverse u : B −→ A and a right
inverse v : B −→ A, then u = v.

Proof. u = u(IdB) = u(tv) = (ut)v = (IdA)v = v. 2

The map t is an inverse (that is, two-sided inverse) provided it is both a left
inverse and a right inverse.

(0.2). Corollary. If the map t : A −→ B has an inverse s, then s is unique.

Proof. If r and s are inverses for t, then r is a left inverse and s is a right
inverse. Thus r = s by the lemma. 2

0.3 Isomorphism and solving equations

We introduce here the basic concept of an isomorphism of two mathematical
objects. (See Treil §1.6.3.) This is a formalism for saying that the two objects
are essentially the same—they are “the same up to changing names” in the
appropriate context.

For instance, two sets A and B with no further structure are “essentially the
same set” precisely when they contain the same number of elements (|A| = |B|).
Purely as sets

A = {1, 2, 3, 4, 5} and B = {a, b, c, d, e}

are the same although the names of the elements are different.
This set identification is formalized by finding a map t from A to B that

accomplishes the “name change”:

There is a map t : A −→ B such that, for every b ∈ B, there is a
unique a ∈ A with t(a) = b.

Such a map is called bijective. (The map is a bijection.) For instance, above we
could take

t(1) = a , t(2) = b , t(3) = c , t(4) = d , t(5) = e .

At times it is easier to consider two related properties:

(i) the map t : A −→ B is surjective if, for every b ∈ B there is at least one
a ∈ A with t(a) = b.

(ii) the map t : A −→ B is injective if, for every b ∈ B there is at most one
a ∈ A with t(a) = b.

Clearly, a bijective map is precisely a map that is both surjective and injective.
In the following three problems, consider maps f : A −→ B, g : B −→ C,

and their composition gf : A −→ C.

(0.3). Problem.
(a) Prove that if f and g are surjective, then gf is surjective.
(b) Prove that if f and g are injective, then gf is injective.
(c) Prove that if f and g are bijective, then gf is bijective.
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(0.4). Problem.
(a) Prove that if gf is surjective, then g is surjective.
(b) Prove that if gf is injective, then f is injective.

(0.5). Problem. Give an example where g is surjective and f is injective, but gf is
not surjective and not injective.

We can think of this in terms of solving equations:

Given b ∈ B, how many solutions x ∈ A are there to the equation
t(x) = b?

Solution of equations will be one of our main themes in linear algebra.

(0.6). Proposition. For the map t : A −→ B the following are equivalent:

(1) t is surjective;

(2) for every b ∈ B there is at least one solution x ∈ A to t(x) = b;

(3) t has a right inverse.

(0.7). Proposition. For the map t : A −→ B the following are equivalent:

(1) t is injective;

(2) for every b ∈ B there is at most one solution x ∈ A to t(x) = b;

(3) t has a left inverse.

(0.8). Problem. Prove Proposition (0.6).

(0.9). Problem. Prove Proposition (0.7).

In both of these, the equivalence of conditions (1) and (2) is essentially the
definition. That (3) implies (1) is a consequence of a problem above. Therefore
the real issue is to prove (1) implies (3). In your proof, notice that you will have
choices to make, so that there will be more than one right (resp., left) inverse,
unless t is a bijection. This observation is related to Lemma (0.1) above.

The two propositions immediately give:

(0.10). Proposition. For the map t : A −→ B the following are equivalent:

(1) t is bijective;

(2) for every b ∈ B there is a unique x ∈ A to t(x) = b;

(3) t has an inverse. 2

(0.11). Problem. Let t : A −→ B be a map with |A| = |B|, both finite. Prove that
the following are equivalent:

(1) t is surjective;

(2) t is injective;

(3) t is bijective.
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0.4 Equivalence relations, representatives, and canonical
forms

Consider a collection S of objects and a relation ∼ between members of S. This
relation is an equivalence relation on S provided it has three properties:

(i) (Reflexive) For all S in S, S ∼ S;

(ii) (Symmetric) For all S, T in S, if S ∼ T then T ∼ S;

(iii) (Transitive) For all S, T, U in S, if S ∼ T and T ∼ U , then
S ∼ U .

Of course, equality is the motivating example of an equivalence relation:

(i) (Reflexive) S = S;

(ii) (Symmetric) If S = T then T = S;

(iii) (Transitive) If S = T and T = U then S = U .

But there are many more examples. In particular, isomorphism as described in
the previous section is an equivalence relation on the class of all sets. (Exercise!)

Functions give us a great source for equivalence relations.

(0.12). Lemma. Let f : A −→ B be a function. Define on A the relation

a1 ∼ a2 ⇐⇒ f(a1) = f(a2) .

Then ∼ is an equivalence relation

The various equivalence classes are the preimage sets f−1(b) as b runs
through B.

(0.13). Problem. Prove Lemma (0.12).

Earlier we saw that bijections can be thought of as changes in names. Simi-
larly equivalence relations can be thought of as assigning labels. The veterinary
clinic might have as patients Boopie, Tiger, Snoopy, Ed, Tex, and Golden River,
but for certain purposes it may be better to group them together as feline, fe-
line, canine, equine, equine, equine. From a medical point of view, a horse is a
horse.2

This reduction principle is important throughout mathematics. We discard
distinctions not important to the situation at hand. For instance, let us say that
two integers are congruent modulo 2 if their difference is a multiple of 2. This
is an equivalence relation, and the two congruence classes are the even integers
and the odd integers. Integer arithmetic induces a meaningful arithmetic on
the two classes—the product of an odd integer and an even integer is always an
even integer; the sum of an odd integer and an odd integer is always an even
integer; and so forth.

2Of course, of course.
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In practice, these large equivalence classes can be unwieldy. Instead we
choose a representative for the class. For instance, among all finite sets with m
elements, we might choose the representative set {1, 2, . . . ,m}. For the integers
modulo 2 we could choose 2 to represent the even numbers and 17 to represent
the odd numbers.

A particularly nice situation occurs when there is an algorithm that, for each
element S of S produces a representative S′ for the class of S that is canonical
in the sense that S1 and S2 are equivalent if and only if S′1 = S′2. In this case,
S′ is sometimes called a canonical form.

The sets {1, . . . ,m} mentioned above are canonical for finite sets. For the
integers modulo 2, we choose as canonical form for the integer z its remainder
upon division by 2—that is, 0 for even integers and 1 for odd integers. The
arithmetic described above then gives the set of representatives {0, 1}, written
Z2, the following arithmetic structure, which we shall see below is that of a field
with two elements:

+ 0 1
0 0 1
1 1 0

∗ 0 1
0 0 0
1 0 1

.

0.5 Mathematical induction

Proof by induction has many versions, but its most basic setting is that of:

The Induction Principle. Consider a subset I of the positive
integers Z+ that has the two properties:

(i) (Initialization step) 1 ∈ I;

(ii) (Induction step) if k ∈ I, then k + 1 ∈ I.

Then I = Z+, the set of all positive integers.

Basic “proof by induction” involves some statement we wish to prove for all
positive integers. We do this by verifying that the set I of all positive integers
for which the statement is true satisfies the two steps of the Induction Principle.

Proof by induction is iterative in nature. It can be used to formalize proofs
that include remarks such as “continuing in this manner” or “repeating this
procedure.”

Here is a classic example of proof by mathematical induction:

(0.14). Theorem. For every positive integer m we have

12 + 22 + · · ·+ (m− 1)2 +m2 =

m∑
i=1

i2 =
m(m+ 1)(2m+ 1)

6
.

Proof. The proof is by induction on m. Let I be the set of positive integers
m for which the identity is true. Then

(i) 1 ∈ I since
∑1
i=1 i

2 = 12 = 1 = 1(1+1)(2·1+1)
6 .
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(ii) Assume k ∈ I; that is,
∑k
i=1 i

2 = k(k + 1)(2k + 1)/6. Consider
∑k+1
i=1 i2.

Then

k+1∑
i=1

i2 =

(
k∑
i=1

i2

)
+ (k + 1)2

=
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
k(k + 1)(2k + 1) + 6(k + 1)2

6

=
(k + 1)[k(2k + 1) + 6(k + 1)]

6

=
(k + 1)(2k2 + 7k + 6)

6

=
(k + 1)(k + 2)(2k + 3)

6
.

That is, k + 1 ∈ I.

Therefore by the Induction Principle I = Z+, and the identity is true for all
positive integers m. 2

(0.15). Problem. Prove the canonical induction example:
For every positive integer m we have

1 + 2 + · · ·+ (m− 1) +m =

m∑
i=1

i =
m(m+ 1)

2
.

(0.16). Problem. Consider the infinite sequence (r1, r2, . . . ) given by the recursion

r1 = a and ri+1 = 3ri + 2 .

Prove that, for all k, we have rk = −1 + 3k−1(a+ 1). Remark. This calculation was
actually required in a recent research paper of mine.

Usually the presentation is not quite as rigid as in the theorem. Here is a
more typical version, which formalizes Treil’s “repeating this procedure.”

(0.17). Proposition. (Treil’s Proposition 1.2.8.) Any finite generating
system of a nonzero vector space contains a basis.

Proof. The proof is by induction on k, the number of vectors in a vector
space generating system. As the spaces considered are nonzero, we have k ≥ 1.

If a vector space has a generating system of size k = 1, then that generating
system is a single nonzero vector v, which is also linearly independent and so a
basis. This initializes the induction.

Suppose now that the result is true for vector spaces with generating systems
of size k. Consider a vector space with a generating system v1, . . . ,vk+1 of size
k + 1. If the system is linearly independent, then it is a basis. If it is linearly
dependent, then by Proposition 1.2.6 one of the vectors vp can be written as a
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linear combination of the others. When we delete vp from the system, we are
left with a generating system of size k. By induction, that system contains a
basis. And clearly v1, . . . ,vk+1 contains that same basis.

Therefore the inductive step is valid, and so the proposition holds by induc-
tion. 2

See Proposition (1.6) and Corollary (1.7) below for another proof of this result.
For a very typical proof by induction, see that for Lemma (1.20) given below.

There are many variants of the Induction Principle (including infinite ver-
sions). We give two helpful and elementary modifications.

The Induction Principle starting at c . Let c be an integer.
Consider a subset I of Z≥c, the set of all integers at least c, that has
the two properties:

(i) (Initialization step) c ∈ I;

(ii) (Induction step) if k ∈ I, then k + 1 ∈ I.

Then I is equal to Z≥c.

The case c = 1 yields the original Induction Principle.
The version with c = 0 is often used. For instance, Treil’s Proposition

1.2.8 could have (and perhaps should have) been proven for all vector spaces
(not just nonzero spaces) by induction on k starting at k = 0, since the only
basis for a vector space {0} is the empty set ∅.

Complete Induction starting at c . Let c be an integer. Consider
a subset I of Z≥c that has the property:

(a) (Complete induction step) for l ∈ Z≥c, if every integer i with
c ≤ i < l is in I, then l is in I.

Then I is equal to Z≥c.

(0.18). Problem. Prove that these last two forms of induction are equivalent to
each other. Hint: If the subset I has (a), then c ∈ I since trivially every integer i
with c ≤ i < c is in I—there are no such i!

(0.19). Problem. Consider the following induction proof that k! ≥ 2k for all k ≥ 1:

Assume that the inequality is valid for k. Then

(k + 1)! = (k + 1)k!

≥ 2k! as k ≥ 1

≥ 2 · 2k by induction

≥ 2k+1 as desired.

(a) What is wrong with this result and proof?

(b) Fix them.
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0.6 Fields

A field is a place where we can do arithmetic as usual. Treil almost always
uses the real numbers R (or later the complex numbers C). You may also want
to think of the rational numbers Q or the binary field Z2 (discussed in Section
0.4 above).

Formally a field is a set F together with two well-defined binary operations

+ : F× F −→ F and ∗ : F× F −→ F

given by
(a, b) 7→ a+ b and (a, b) 7→ a ∗ b

and subject to the following axioms:

(1) (Additive commutativity) a+ b = b+ a for all a, b ∈ F;
(2) (Additive associativity) a+ (b+ c) = (a+ b) + c for all a, b, c ∈ F;
(3) (Additive identity) there exists a element 0F in F such that a+0F = a for all a ∈ F;
(4) (Additive inverses) for every a ∈ F there exists a b ∈ F such that a+ b = 0;

(5) (Multiplicative identity) there exists a element 1F( 6= 0F) in F such that 1F ∗ a = a
for all a ∈ F;

(6) (Multiplicative associativity) a ∗(b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ F;
(7) (Left distributivity) a ∗(b+ c) = a ∗ b+ a ∗ c for all a, b, c ∈ F;
(8) (Right distributivity) (a+ b) ∗ c = a ∗ c+ b ∗ c for all a, b, c ∈ F;
(9) (Mutliplicative inverses) for every 0F 6= a ∈ F there exists a b ∈ F such that

a ∗ b = 1F;

(10) (Multiplicative commutativity) a ∗ b = b ∗ a for all a, b ∈ F.

The usual convention is to use juxtaposition ab in place a ∗ b; for instance,
(6) becomes a(bc) = (ab)c. Also we usually write 0 in place of 0F and 1 in place
of 1F and hope that this does not cause confusion.

Subtraction and division are not defined. These are actually derived from
addition and multiplication, using the inverses that are guaranteed. To “sub-
tract” b from a, we add the additive inverse of b to a. To “divide” by nonzero
b, we multiply by the multiplicative inverse of b.

The various axioms are presented in a small typeface to emphasize the fact
that, while complicated, their message is simple: a field is a place where we
can carry out the usual arithmetic operations of addition, subtraction, multi-
plication, and division satisfying the familiar rules (and subject to the familiar
restrictions). Don’t dwell on the axioms, just remember the message.

(0.20). Problem. From the axioms, prove:

(a) (Uniqueness of additive identity) a+ b = a for all a ∈ F if and only if b = 0F.

(b) (Uniqueness of additive inverse) For a ∈ F, if a + b = a + c, then b = c. In
particular, the additive inverse b of a guaranteed by (4) is uniquely determined
and will be denoted −a.
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(c) a ∗ 0F = 0F for all a ∈ F.

(d) −a = (−1) ∗ a for all a ∈ F.

(e) (Uniqueness of multiplicative identity) a ∗ b = a for all a ∈ F if and only if b = 1F.

(f) (Uniqueness of multiplicative inverse) For 0F 6= a ∈ F, if a ∗ b = a ∗ c, then b =
c. In particular, the multiplicative inverse b of a guaranteed by (9) is uniquely
determined and will be denoted a−1.

(g) For a, b ∈ F, if a ∗ b = 0F then a = 0F or b = 0F.

0.6.1 Matrix notation

For us Matm,n(X) will denote the set of all m×n matrices (rectangular arrays)
with entries from the set X.

If A is the m× n matrix with entry ai,j in row i and column j then Treil
may write

A = (ai,j)
m, n
i=1, j=1

which we at times abbreviate to

A = (ai,j)i,j .

We will be particularly interested in the column m-tuples from Xm =
Matm,1(X) and the row n-tuples of Xn = Mat1,n(X).

It will helpful at times to realize that the matrices of Matm,n(X) can be
equally well thought of as column m-tuples with row vector entries from Xn

and, especially, as row n-tuples with column vector entries from Xm:

A =

(
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

)
=

(
(a1,1, a1,2, a1,3)
(a2,1, a2,2, a2,3)

)
=

((
a1,1
a2,1

)(
a1,2
a2,2

)(
a1,3
a2,3

))
.

If the m × n matrix A has ai,j as its row i and column j entry, then its
transpose A> is the n×m matrix that has ai,j as its row j and column i entry.
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1 Chapter 1: Basic Notions

1.1 Vector spaces

We give a slightly modified version of Treil’s definition of a vector space:
Let F be a field. A vector space V over F is a set V together with two

well-defined maps, vector space addition

⊕ : V × V −→ V

and scalar multiplication
· : F× V −→ V

given by
(v,w) 7→ v ⊕w and (α,v) 7→ α ·v

and subject to the following axioms:

(1) (Additive commutativity) v ⊕w = w ⊕ v for all v,w ∈ V ;

(2) (Additive associativity) u⊕ (v ⊕w) = (u⊕ v)⊕w for all u,v,w ∈ V ;

(3) (Additive identity) there exists a vector 0V such that v ⊕ 0V = v for all
v ∈ V ;

(4) (Additive inverses) for every vector v ∈ V there exists a w ∈ V such that
v ⊕w = 0V ;

(5) (Multiplicative identity) 1F ·v = v for all v ∈ V ;

(6) (Multiplicative associativity) α ·(β ·v) = (α ∗β) ·v for all α, β ∈ F and
v ∈ V ;

(7) (Left distributivity) α ·(v ⊕ w) = α ·v ⊕ α ·w in V for all α ∈ F and
v,w ∈ V ;

(8) (Right distributivity) (α + β) ·v = α ·v ⊕ β ·v in V for all α, β ∈ F and
v ∈ V .

(1.1). Problem. From the axioms, prove:

(a) (Uniqueness of additive identity) v ⊕w = v for all v ∈ V if and only if w = 0V .

(b) (Uniqueness of additive inverse) For v ∈ V , if v ⊕ x = v ⊕ y then x = y. In
particular, the additive inverse w of v guaranteed by (4) is uniquely determined
and will be denoted −v.

(c) For all a ∈ F, we have a ·0V = 0V .

(d) For all v ∈ V , we have 0F ·v = 0V .

(e) For all v ∈ V , we have −v = (−1) ·v.
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We also use the terminology F-vector space or even F-space when referring
to vector spaces over the field F.

The notation emphasizes the fact that field addition and multiplication are
not the same as scalar (vector space) multiplication and vector space addition.
Nevertheless it is customary to denote both multiplications by juxtaposition;
for instance, (6) becomes α(βv) = (αβ)v. Similarly we use + for both types of
addition, so that (8) takes the form (α+ β)v = αv + βv. This is less cluttered
but is open to misinterpretation, so care must be taken.

We typically write 0 in place of 0V . As mentioned in the problem, the usual
convention is to write −v for the additive inverse of v and always −v = (−1)v.
We also write w − v in place of w + (−v).

By Axiom (1) the conclusion of Axiom (3) could read v + 0 = v = 0 + v,
and similarly the conclusion of Axiom (4) could read v + w = 0 = w + v.

It is not a coincidence that the axioms for a vector space are very similar to
the axioms for a field (as given in Section 0.6). If E is a subfield of the field F,
then F has a natural structure as a vector space over E. For instance, we often
think of complex numbers as pairs of real numbers.

1.1.1 Examples

(i) We use Matm,n(F) to denote the vector space of all m×n matrices over the
field F. (See Section 0.6.1.) The corresponding notation in Treil is Mm,n

with it understood that that entries come from the real field R. The most
important example of a vector space for us is Fm (= Matm,1(F)), the space
of length n column vectors. The corresponding space Fn = Mat1,n(F) is
that of row vectors.

(ii) A second type of important example of a vector space over R is the set Pn of
all polynomials (with real coefficients) of degree at most n, provided with
usual polynomial (function) addition and real multiplication by scalars
(constant functions).

It is in fact possible, for any field F, to define a vector space Pn(F) of
polynomials of degree at most n with coefficients from F. We will not give
the definition here, although we observe that the vector spaces Pn(Q) and
Pn(C) of rational and complex polynomials (respectively) with degree at
most n have natural definitions similar to that of Pn = Pn(R).

The vector space Pn can also be viewed as a special case of a function
space. Let Φ be a collection of functions f : X −→ W , where X is some
set and W is a vector space over the field F. We can define function
addition pointwise: while X does not itself have additive structure, the
space W does. For every x ∈ X and pair of functions f, g ∈ Φ, the vectors
f(x) and g(x) can be added together within the space W . Therefore we
have the new function f + g : X −→ F given by

(f + g)(x) = f(x) + g(x), for x ∈ X .
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Similarly we have a pointwise definition of scalar multiplication: for f ∈ Φ
and a ∈ F we get a new function af given by

(af)(x) = a(f(x)), for x ∈ X .

For many choices of Φ, X, W , and F, these operations give Φ the struc-
ture of a vector space over F. Pn is the case where Φ consists of all real
polynomial functions of degree at most n and W = F = R. We can also
consider spaces such as C[0, 1], the space of all continuous real functions
defined on the interval [0, 1].

The matrix notation A = (ai,j)i,j shows that the matrix vector space
Matm,n(F) can be thought of as a function space. It is the set of all
functions A : {1, . . . ,m} × {1, . . . , n} −→ F, where A(i, j) = ai,j . In Sec-
tions 1.4 and 1.5.3 we shall see amother way in which the matrix space
Mat(m,n) has a natural life as function space.

(1.2). Problem. Prove that C[0, 1] is a vector space over R.

(iii) As a rich source of examples of vector spaces, we introduce here the concept
of subspaces of vector spaces. (See Treil §1.7.) These are the subsets W
of the F-vector space V that are themselves vector spaces over F for the
vector addition and scalar multiplication that they inherit from V . If
we examine the above axioms for a vector spaces we see that the subset
W of V is a subspace provided it contains 0 and is closed under vector
addition and scalar multiplication. (Care must be taken with the axiom
guaranteeing additive inverses.)

Clearly the vector space V is a subspace of itself. Also the set {0V } is a
subspace of V , the trivial space. If x1, . . . ,xm is a system of vectors in the
F-vector space X, then its span in V is the subspace

Span(x1, . . . ,xm) = {
m∑
j=1

αjxj | αj ∈ F } .

Treil uses the notations span{x1, . . . ,xm} and L{x1, . . . ,xm}. I prefer
the upper case Span, but Treil’s curly brackets {· · · } have some virtue
since the span only depends on the set {x1, . . . ,xm}, not the particular
ordered list x1, . . . ,xm.3

1.1.2 Matrix notation

This is discussed in Section 0.6.1.

3We will not use Treil’s notation L{x1, . . . ,xm}.
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1.2 Linear combinations, bases

If α1, . . . , αj , . . . αn is a system of elements in the field F and v1, . . . ,vj , . . . ,vn
a system of vectors in the F-vector space V , then the corresponding linear
combination is the vector

v = α1v1 + · · ·+ αjvj + · · ·+ αnvn =

n∑
j1

αjvj

of V , the αi being the coefficients of the linear combination.

1.2.1 Generating and linearly independent systems

Consider the system v1, . . . ,vj , . . . ,vn, and for arbitrary v ∈ V the equation

α1v1 + · · ·+ αjvj + · · ·+ αnvn = v .

We have three important definitions:

(i) If for every v ∈ V there is at least one solution system α1, . . . , αj , . . . , αn
to this equation, then the system of vectors is a generating system (or
spanning system4).

(ii) If for every v ∈ V , there is at most one solution system α1, . . . , αj , . . . , αn
to this equation, then the system of vectors is a linearly independent sys-
tem.

(iii) If for every v ∈ V , there is exactly one solution system α1, . . . , αj , . . . , αn
to this equation, then the system of vectors is a basis (or base).

By convention a trivial space {0} has a unique basis, namely, the empty set
∅. (This convention is particularly natural if we think of a basis as a minimal
generating set, as in Corollary (1.7)(b) below.) The canonical basis e1 . . . , em of
Fm will be denoted Em, and the standard basis 1, t, . . . , tn of Pn will be denoted
Sn.

We have the important and immediate

(1.3). Proposition. (Treil’s Proposition 1.2.7) A system of vectors is a
basis if and only if it is generating and linearly independent. 2

It may initially seem strange that a result, for which Treil must work,
is immediate for us. This is because our definitions are slightly different from
those of Treil. Our definitions match Treil exactly for generating systems and
bases, but our definition of linear independence is different, being (apparently)
more restrictive than that used by Treil:

4We will not use Treil’s term complete.
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The system v1, . . . ,vj , . . . ,vn is linearly independent precisely when
the only solution system α1, . . . , αj , . . . , αn to the equation

α1v1 + · · ·+ αjvj + · · ·+ αnvn = 0

is the trivial system α1 = · · · = αj = · · · = αn = 0.

In any event, the system v1, . . . ,vj , . . . ,vn is linearly dependent if it is not
linear independent. From our definition, this gives

for some v ∈ V , there is more than one solution system α1, . . . , αj , . . . , αn
to the equation

α1v1 + · · ·+ αjvj + · · ·+ αnvn = v .

Equally well for Treil, a system that is not linearly independent is linearly
dependent. From his definition, this yields

there is a nontrivial solution system α1, . . . , αj , . . . , αn to the equa-
tion

α1v1 + · · ·+ αjvj + · · ·+ αnvn = 0 .

In this case, we may call the lefthand side of this equality a nontrivial
linear dependence.

Correspondingly, the trivial system α1 = · · · = αj = · · · = αn = 0 is said to
give a trivial linear dependence of the system.

The following lemma removes any confusion. It shows that the two concepts
of linear dependence are equivalent, and hence (by the contrapositive) that the
two definitions of linear independence are equivalent.

(1.4). Lemma. The following are equivalent:

(1) For some v ∈ V , there is more than one solution system α1, . . . , αj , . . . , αn
to the equation

α1v1 + · · ·+ αjvj + · · ·+ αnvn = v .

(2) There is more than one solution system α1, . . . , αj , . . . , αn to the equation

α1v1 + · · ·+ αjvj + · · ·+ αnvn = 0 .

(3) There is a nontrivial solution system α1, . . . , αj , . . . , αn to the equation

α1v1 + · · ·+ αjvj + · · ·+ αnvn = 0 .

Proof. Parts (3) and (2) are equivalent, since the zero solution system
αi = 0 always yields a trivial linear dependence. Furthermore (2) implies (1)
by taking v = 0.
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It remains to show that (1) implies (2). Assume that β1, . . . , βj , . . . , βn and
δ1, . . . , δj , . . . , δn are two different solutions to the equation of (1) for v. Then
the homogeneous equation of (2) has the trivial solution αi = 0, for all i, but
the homogeneous equation with righthand side 0 = v − v is also solved by the
system γ1, . . . , γj , . . . , γn where we set γi = βi − δi, not all 0, as desired. 2

(1.5). Proposition. (Treil’s Proposition 1.2.6)

(a) The system v1, . . . ,vp is linearly dependent if and only if there is a k and
a system β1, . . . , βp with vk =

∑p
k 6=j=1 βjvj.

(b) More specifically, if 0 =
∑p
j=1 αjvj is a nontrivial linear dependence, then

for every k with αk 6= 0 it is possible to find a system β1, . . . , βp with vk =∑p
k 6=j=1 βjvj.

(c) In the situation of (b), the system v1, . . . ,vk−1,vk+1, . . .vp spans the same
subspace of V as does v1, . . . ,vp.

Proof. (a) follows immediately from (b).
(b) (⇐=) With βk = −1, 0 =

∑p
j=1 βjvj is a nontrivial linear dependence.

(=⇒) Let 0 =
∑p
j=1 αjvj be a nontrivial linear dependence by virtue of,

say, αk 6= 0. Then −αkvk =
∑p
k 6=j=1 αjvj and vk =

∑p
k 6=j=1 βjvj for βi =

−αi(αk)−1.
(c) In this case, if w =

∑p
j=1 γjvj then

w =

p∑
j=1

γjvj = γkvk +

p∑
k 6=j=1

αjvj

= γk

( p∑
k 6=j=1

βjvj

)
+

p∑
k 6=j=1

αjvj

=

p∑
k 6=j=1

(γkβj + αj)vj . 2

(1.6). Proposition. Let V be a finitely generated F-space. For any linearly
independent system L and any finite generating system G, there is a subsystem
S of G such that L ∪ S is a basis of V .

Proof. Let S be a subsystem of G of minimal size subject to V being
generated by L∪S. (Such an S exists since G is finite.) We claim that this gen-
erating system is linearly independent. Assume not. Then there is a nontrivial
linear dependence among its members. In such a linear dependence, at least
one nonzero coefficient must belong to a member of S since L itself is linearly
independent. As noted in Proposition (1.5)(c), that element can be deleted from
S with the remaining subsystem of L ∪ S still generating. This contradicts the
minimality of S. The contradiction proves that the generating system L ∪ S is
also linearly independent and hence a basis, as claimed. 2
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(1.7). Corollary. Let V be a finitely generated F-space.

(a) (Treil’s Proposition 1.2.8) Every finite generating system contains a basis.

(b) Every minimal finite generating system is a basis.

(c) (Treil’s Proposition 2.5.4) Every linearly independent system in V is con-
tained in a basis.

(d) Every maximal linear independent system is a basis.

Proof. The first two come from the case L = ∅ of the proposition. The
second two come from letting L be the system under discussion. 2

Recall that part (a) of this corollary (that is, Treil’s Proposition 1.2.8)
was also presented as Proposition (0.17) to provide an example of a proof by
induction.

A special case of all of these is the following extremely important result:

(1.8). Corollary. If V is a finitely generated F-space, then it has a basis.
2

It is clear that every nonzero vector space has a generating system (for
instance, the whole space) and a linearly independent system (for instance, any
single vector), but it is not at all clear that every vector space has a basis. The
above corollary guarantees that for finitely generated spaces.

In fact, every vector space has a basis. The corollaries (restated to remove
finite generation) remain true for arbitrary vector spaces, but we will not pursue
these extensions.

1.2.98 Sets and systems of vectors

If {v1, . . . ,vj , . . . ,vn} is a set of vectors in the F-space V , then it is natural to
consider the associated system [[v1, . . . ,vj , . . . ,vn]]. Is it generating? linearly
independent? a basis? Correspondingly, what do these properties for a system
[[v1, . . . ,vj , . . . ,vn]] say about its underlying set {v1, . . . ,vj , . . . ,vn}?

Recall that an ordered set is a system in which no element appears more
than once.

Let V be an n-set in V (that is, a set containing n distinct vectors of V ).
We say that V is a generating set (or spanning set) if there is an ordered set
(and so a system) [[v1, . . . ,vj , . . . ,vn]] that is a generating system with V =
{v1, . . . ,vj , . . . ,vn}. Similarly the n-set V is linearly independent if there is an
ordered set (system) [[v1, . . . ,vj , . . . ,vn]] that is a linearly independent system
with V = {v1, . . . ,vj , . . . ,vn}.5

(1.9). Lemma.

5We shall almost always be dealing with finite systems. For infinite systems and sets the
same terminology is used, although then we must deal with infinite ordered sets.
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(a) If V is a generating set, then any ordering of its vectors gives a generating
system.

(b) If V is a generating system, then its underlying set {v | v ∈ V } is a
generating set.

(c) If V is a system and its underlying set {v | v ∈ V } is a generating set, then
V is a generating system.

(1.10). Lemma.

(a) If V is a linearly independent set, then any ordering of its vectors gives a
linearly independent system.

(b) If V is a linearly independent system, then it is an ordered set and its un-
derlying set {v | v ∈ V } is a linearly independent set.

(1.11). Problem.

(a) Prove Lemma (1.9).

(b) Prove Lemma (1.10).

Note the distinctions between the two results. The list

L = [[(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 0)]]

is a generating system for Mat1,3(F) with underlying set

L = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ,

which is a generating set. The set L is also linearly independent (any ordering
of it is a basis), but the original system L is not linearly independent since it
contains (1, 0, 0) twice.

Since every linearly independent system is an ordered set of vectors, a basis is
by definition a linearly ordered set of vectors that is both spanning (generating)
and linearly independent. We sometimes abuse our terminology by referring to
a set that is spanning and linearly independent as a basis. In this case, any
ordering of the set gives a basis (different orderings giving different bases). So,
for instance, a more common phrasing of Proposition (1.6) would be:

(1.12). Proposition. Let V be a finitely generated F-space. For any linearly
independent set L and any finite generating set G, there is a subset S of G such
that L ∪ S is a basis of V . 2

1.2.99 Vector space isomorphism

Recall from Section 0.3 that an isomorphism exhibits two objects as basically
same except the names of elements may have been changed. Here we are specif-
ically interested in isomorphism of vector spaces (discussed in Treil’s §1.6.3).
A vector space isomorphism of the two F-spaces V and W is a bijective map
T : V −→W
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(1) T (u + v) = T (u) + T (v), for all u,v ∈ V ;

(2) T (αv) = αT (v), for all α ∈ F and v ∈ V .

So an isomorphism of the F-spaces V and W is a set isomorphism of V and
W that additionally respects the vector space operations that are defined on
the two sets. The vector space W is essentially the same as the vector space
V , only the names have been changed according to the map T . Vector space
isomorphism formalizes natural feelings, such as the observation that there is no
essential difference between row vectors and column vectors; see Lemma (1.15)
below.

Two vector spaces V and W are isomorphic if there is an isomorphism
T : V −→ W . When we think of an isomorphism as just a renaming of spaces
that are essentially the same, it is clear that V is isomorphic to W if and only
if W is isomorphic to V . Here is a more precise version of this observation:

(1.13). Proposition. Let T : V −→ W be a vector space isomorphism.
Especially T is a bijection of sets, so by Proposition (0.10) it has an inverse
S : W −→ V that is also a set isomorphism. In fact S : W −→ V is an isomor-
phism of F-vector spaces.

Proof. S is a bijection by definition.
Let w,x ∈W and α ∈ F. We must prove that

S(w + x) = S(w) + S(x) and S(αw) = αS(w) .

Let S(w) = u and S(x) = v, elements of V determined by the inverse set map
S from W to V . Clearly w = TS(w) = T (u) and x = TS(x) = T (v). Now

S(w + x) = S(T (u) + T (v))

= S(T (u + v))

= (ST )(u + v)

= u + v

= S(w) + S(x) ,

where all the statements are at the set level except for the transition from the
first line to the second where we have used the first property of T as vector
space isomorphism. Next we use the second vector space isomorphism property
of T to find

S(αw) = S(αT (u))

= S(T (αu))

= (ST )(αu))

= αu

= αS(w) ,
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as desired. 2

If there is some isomorphism from V to W , then we write V ∼= W . An
immediate consequence of the proposition is that isomorphism is symmetric:
V ∼= W if and only if W ∼= V . Clearly isomorphism is reflexive: the identity map
is a vector space isomorphism of every vector space with itself. The next problem
states that isomorphism is transitive. Therefore vector space isomorphism is an
equivalence relation on the class of all F-vector spaces.

(1.14). Problem. For F-vector space isomorphisms T1 : V −→W and T2 : U −→
V , prove that the composition map S = T1T2 : U −→W is a vector space isomorphism.

(1.15). Lemma. (Treil’s Proposition 1.2.7) The vector space Fn (column
vectors) and Fn (row vectors) are isomorphic F-spaces, with the isomorphism
given by the transpose map.

Proof. See Problem (1.19). 2

Treil’s Remark 1.2.4 suggests the following extremely important result,
repeated later in Treil §1.6.3 as Example 2, and discussed in more detail in
Section 2.8.1 below.

(1.16). Theorem. V has a basis v1, . . . ,vm over F if and only if it is
isomorphic as F-vector space to Fm.

Proof. (=⇒) For every v in V there is a uniquely determined system
α1, . . . , αj , . . . , αm from F with

v = α1v1 + · · ·+ αjvj + · · ·+ αmvm .

Define the map T : V −→ Fm by

T (v) = (α1, . . . , αj , . . . , αm)> .

Then T is a vector space isomorphism.
(⇐=) If S : Fm −→ V is a vector space isomorphism, then

v1 = S(e1), . . . ,vj = S(ej), . . . ,vm = S(em)

is a basis of V . 2

In the language of Section 0.4 every isomorphism class of finitely generated
F-vector spaces is represented by a column space Fm for some integer m.

(1.17). Problem. Prove that Matm,n(F) and Matn,m(F) are isomorphic F-vector
spaces via the transpose map.

(1.18). Problem.

(a) Prove Pn is isomorphic to Rn+1.

(b) Prove Pn is isomorphic to Rn+1.

(1.19). Problem. Prove that Matm,n(F), (Fm)n, and (Fn)
m are isomorphic F-vector

spaces.
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1.3 Linear Transformations

The concept of vector space isomorphism introduced in Section 1.2.99 was very
natural. Here we discard the bijectivity requirement and reveal a powerful new
topic.

A linear transformation T : V −→ W of the F-vector spaces V and W is a
map from V to W with

(1) T (u + v) = T (u) + T (v), for all u,v ∈ V ;

(2) T (αv) = αT (v), for all α ∈ F and v ∈ V .

Here V is the domain and W is the target or codomain.

Parts (1) and (2) of the definition above can be combined into the single
“superposition” axiom:

T (αu + βv) = αT (u) + βT (v), for all α, β ∈ F and all u,v ∈ V .

This is the case m = 2 of the following important lemma:

(1.20). Lemma. T (
∑n
j=1 αjvj) =

∑n
j=1 αjT (vj) .

Proof. The proof is by induction on n. The case n = 1 is just (2) above.
Assume the result holds for n − 1. Then by the superposition axiom and

induction,

T
( n∑
j=1

αjvj

)
= T

( n−1∑
j=1

αjvj

)
+ αnvn

=
(n−1∑
j=1

αjT (vj)
)

+ αnvn

=

n∑
j=1

αjT (vj) ,

as claimed. 2

In particular (as observed in §1.3.3 on page 15 of Treil):

(1.21). Corollary. A linear transformation T : V −→ W is completely
determined by its values on any generating system of V . 2

The case in which the system is a basis is particularly important.

(1.22). Theorem. Let V and W be F-spaces with v1, . . . ,vn a basis of V and
w1, . . . ,wn any system of elements from W . Then the map

T (v1) = w1, . . . , T (vj) = wj , . . . , T (vn) = wn
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has a unique extension to a linear transformation T : V −→W , namely

T
( n∑
j=1

αjvj

)
=

n∑
j=1

αjwj ,

for all coefficient systems α1, . . . , αn.

Proof. The crucial observation is that the initial definition of T on the
subset of the vj has the given map as a well-defined extension to all of V .
This works because the vj form a basis. Every v has a unique expression as∑n
j=1 αjvj ; the system of coefficients α1, . . . , αn is uniquely determined by v,

so there is a well-defined image vector w for v given by
∑n
j=1 αjwj . And by

Lemma (1.20) this extension is the only one that has a chance of being a linear
transformation. It remains to check that this is indeed a linear transformation.

For v,w ∈ V and a, b ∈ F, if v =
∑n
j=1 αjvj and w =

∑n
j=1 βjvj then

av + bw =
∑n
j=1(aαj + bβj)vj . Then

aT (v) + bT (w) = a

n∑
j=1

αjvj + b

n∑
j=1

βjvj

=

n∑
j=1

aαjvj +

n∑
j=1

bβjvj

=

n∑
j=1

(aαj + bβj)vj

= T (av + bw) ,

as desired. 2

We have discussed the basic definitions and properties of subspaces above.
Here we have definitions of two important additional examples:

(a) If A : X −→ Y is a linear transformation of F-vector spaces then the kernel
or null space of A is the subspace of X given by

Ker(A) = {x ∈ X | A(x) = 0Y } .

(b) If A : X −→ Y is a linear transformation of F-vector spaces then the image
or range of A is the subspace of Y given by

Ran(A) = {y ∈ Y | there is x ∈ X with A(x) = y } .

(1.23). Problem. Prove that Ker(A) is a subspace of X.

(1.24). Problem. Prove that Ran(A) is a subspace of Y .
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1.3.1 Examples of linear transformations

(i) Vector space isomorphisms are precisely the bijective linear transforma-
tions.

(ii) If V = W , then the identity linear transformation I : V −→ V (at times
written IV ) is given by I(v) = v for all v ∈ V .

(iii) The trivial (or zero) linear transformation 0V,W : V −→ W is given by
0V,W (v) = 0W for all v ∈ V .

(iv) Differentiation Pn −→ Pn−1.

(v) Definite integration with domain C[0, 1] and image R: f(x) 7→
∫ 1

0
f(t)dt.

(vi) Rotation in R2.

(vii) Reflection in R2.

(viii) Projection of Fn onto Fm for m < n:
(a1, . . . , am, am+1, . . . , an)> 7→ (a1, . . . , am)>.

1.3.2 Matrix linear transformations and representation

Consider a linear transformation T : Fn −→ Fm. We shall call such a map a
matrix linear transformation.

For each vector ej in the standard basis En of Fn we set ai = T (ej). The
m× n matrix with aj as its jth column,

A = (a1, . . . ,aj , . . . ,an) ,

is then the matrix representing T .
If x = (x1, . . . , xj , . . . , xn)> ∈ Fn the linear transformation T has

T (x) = x1a1 + · · ·+ xjaj + · · ·+ xnan .

(1.25). Lemma. T (x) = Ax. 2

If you are familiar with matrix multiplication, then the lemma is immediate
from the previous displayed equation. Instead Treil takes the point of view
that the lemma and displayed equation define matrix multiplication of the m×n
matrix A by an n × 1 matrix (vector) x with result the m × 1 matrix (vector)
Ax (= T (x)).

At times we will write [T ] = A for the matrix representing the matrix linear
transformation T . The equation of the lemma becomes

T (x) = [T ]x ,

and we interpret the lemma to say that, for each matrix linear transformation
T , there is a unique matrix [T ] that represents T (via matrix multiplication).
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We will have much more to say about matrix representation in Section 2.8.
Now we are content to observe that there is a one-to-one correspondence between
matrix linear transformations and matrices. The direction T 7→ [T ] of this
correspondence has been described above. The other direction is given by the
following lemma.

(1.26). Lemma. Let A ∈ Matm,n(F). Then the map T : Fn −→ Fm given by
T (x) = Ax is a matrix linear transformation with [T ] = A.

(1.27). Problem. Prove this lemma.

A common (but potentially confusing) convention is to identify the matrix A
with its associated matrix linear transformation x 7→ Ax. That is, we sometimes
write

A(x) = Ax .

For the most part this will not cause problems, but care must be taken and the
distinction should be remembered.

1.3.3 Linear transformations and generating sets

We discussed this in Corollary (1.21) above.

1.3.4 Conclusions

This material is discussed elsewhere.

1.4 Arithmetic properties of sets of linear transformations

Let L(V,W ) be the set of all linear transformations from the F-vector space V
to the F-vector space W . The set L(V,W ) can be naturally interpreted as a
function space from V to W , as in Section 1.1.1, providing it with the structure
of an F-vector space.

For scalar multiplication by elements of F, for each α ∈ F and each T ∈
L(V,W ), we let the linear transformation αT ∈ L(V,W ) be given by

(αT )(v) = αT (v), for all v ∈ V .

This is a “pointwise” definition of the map αT , possible as the value T (v) of
the function T at the “point” v is a vector of W , a space that admits scalar
multiplication by α ∈ F.

Similarly, for vector addition, when S, T ∈ L(V,W ) the linear transformation
S + T ∈ L(V,W ) can be defined pointwise via

(S + T )(v) = S(v) + T (v), for all v ∈ V .

(1.28). Problem. Let V = Fn and W = Fm. Prove that L(V,W ) is isomorphic to
Matm,n(F).
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In certain circumstances it is also possible to “multiply” two linear trans-
formations. (See Treil §1.5.3.) If T ∈ L(V,W ) and U ∈ L(W,X), where X
is a third F-space, then we can define U ◦ T = UT ∈ L(V,X) pointwise by
composition of functions:

(UT )(v) = U(T (v)), for all v ∈ V .

It must be checked that each of αT , S+T , and UT defined above are genuinely
F-linear transformations (not just set maps).

(1.29). Problem. Check:

(a) αT is a linear transformation.

(b) S + T is a linear transformation.

(1.30). Lemma. UT is a linear transformation.

Proof. For x,y ∈ V and a, b ∈ F,

UT (ax + by) = U(T (ax + by))

= U(aT (x) + bT (y))

= aU(T (x)) + bU(T (y))

= a(UT (x)) + b(UT (y)) .2

Having done that checking, we move on to verify that our algebraic opera-
tions on sets of linear transformations have various nice (and somewhat familiar
properties). For instance, the first property follows from the associativity of
function composition (discussed in Section 0.2). In each case we must assume
that the appropriate domains and codomains are compatible as described above:

(1) Associativity: A(BC) = (AB)C;

(2) Distributivity: A(B + C) = AB +AC and (A+B)C = AC +AB);

(3) Scalar commutativity: A(αB) = α(AB) = (αA)B.

On the other hand, we cannot presume commutativity even with the appropriate
compatibility:

(1.31). Problem. Find V and A,B ∈ L(V, V ) with AB 6= BA.

In the special case V = W , all compatibility conditions are valid. This gives
the space L(V, V ) a rich arithmetic structure.

1.5 Matrix multiplication

1.5.1 Matrix multiplication: definition

Recall from Section 1.3.2 the definition of the matrix product

Ax = x1a1 + · · ·+ xjaj + · · ·+ xpap
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for A ∈ Matm,p(F) and column vector (x1, . . . , xj , . . . , xp)
> = x ∈ Fp =

Matp,1(F). In the particular case m = 1, we have the product

(a1, . . . , aj , . . . , ap)x =
( p∑
j=1

ajxj

)
,

a 1× 1 matrix containing the dot product of the two p-tuples a and x.
In the more general case Ax = y with y a column m-tuple, the ith entry of

y is the dot product of the ith row of A with x.

We now define the most general version of matrix multiplication. Let A ∈
Matm,p(F) and B ∈ Matp,n(F). Then

the product AB is the m × n matrix whose jth column Abj is the
product of A and the jth column bj of B.

Equivalently,

the product AB is the m × n matrix whose (i, j)-entry is the dot
product of the ith row of A and the jth column of B.

In both versions we find

(AB)i,j =

p∑
k=1

ai,kbk,j

for A = (ai,k)i,k and B = (bk,j)k,j .
It is important to understand that the product of two matrices with entries

from F is defined if and only if the number of columns in the first matrix is
equal to the number of rows in the second matrix.

1.5.2 Matrix multiplication: motivation

A nice consequence of Treil’s definition of matrix multiplication in terms of
linear transformations is that we are provided with motivation for the familiar
but somewhat arbitrary looking formula above. The composition of matrix lin-
ear transformations is represented by the product of the individual representing
matrices.

(1.32). Proposition. If T2 : Fn −→ Fp and T1 : Fp −→ Fm are linear trans-
formations, then

[T1T2] = [T1][T2] .

Proof. Let A = [T1] and B = [T2]. Thus column j of B is bj = T2(ej),
and the product AB is defined to have jth column Abj . This is also the jth

column of [T1T2], since

(T1T2)(ej) = T1(T2(ej)) = T1(bj) = [T1]bj

by Lemma (1.25). 2
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1.5.3 Arithmetic properties of sets of matrices

Much of this material was discussed in Section 1.4 above. In that section we
noted that the set of functions L(Fn,Fm) is an F-vector space, while in Section
1.1.1 we saw this for Matm,n(F). In fact

(1.33). Proposition. The map T −→ [T ] gives an isomorphism of the
F-vector spaces L(Fn,Fm) and Matm,n(F).

(1.34). Problem. Prove this lemma.

In particular Matm,n(F) can be viewed as a function space, as promised in
Section 1.1.1.

This proposition and Proposition (1.32) show that the algebraic properties
of linear transformations discussed in Section 1.4 go over directly to matrices.
That is, when appropriate:

(1) Associativity: A(BC) = (AB)C;

(2) Distributivity: A(B + C) = AB +AC and (A+B)C = AC +AB);

(3) A(αB) = α(AB) = (αA)B.

But often AB does not equal BA.

The above remarks illustrate the general fact that a result or concept for
linear transformations can be immediately reinterpreted in the special case of
matrix linear transformations to say something meaningful about matrices. The
correspondence will be a direct application of Propositions (1.32) and (1.33).

This translation is usually so immediate that the appropriate matrix result
will often not be specifically noted. This is the case in Treil and also will be
in these notes, except where the matrix results seem worthy of special note. See
Lemma (1.47) and Theorem (1.52) below.

1.5.4 Transpose

Using the dot product version of matrix multiplication, we immediately find:

(1.35). Lemma. (AB)> = B>A>. 2

1.5.5 Trace

The trace of the n × n matrix A = (ai,j)i,j is the sum of its diagonal entries:
trace(A) =

∑n
i=1 ai,i.

(1.36). Lemma. If B is m×n and C is n×m, then trace(BC) = trace(CB).

(1.37). Problem. Prove Lemma (1.36).

Treil points out that this is a consequence of:

(1.38). Problem.

(a) Prove that for fixed A, the map T : X −→ trace(XA) is a linear transformation.

(b) Prove that for fixed A, the map T : X −→ trace(AX) is a linear transformation.
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1.5.99 Block matrix multiplication

This can be useful.

(1.39). Proposition. For i, j, k ∈ {1, 2}, let Ai,j be an mi × pj matrix and
Bj,k be an pj × nk matrix (all over the same field F). Then(
A1,1 A1,2

A2,1 A2,2

)(
B1,1 B1,2

B2,1 B2,2

)
=

(
A1,1B1,1 +A1,2B2,1 A1,1B1,2 +A1,2B2,2

A2,1B1,1 +A2,2B2,1 A2,1B1,2 +A2,2B2,2

)
.

Proof. This is clear for the dot product case m1 = 1 = n1, m2 = 0 = n2.
The general case then follows directly. 2

More generally, any blocking of two matrices that allows all the necessary
products of submatrices gives a valid block matrix multiplication. (This can
be proved by inducting starting from the proposition.) For instance, Treil’s
initial definition of matrix multiplication in Section 1.5.1 is the case in which
m1 = m (and all other mi are 0), p1 = n, and nj = 1 for 1 ≤ j ≤ n.

1.6 Invertible linear transformations

1.6.1 Identity

We have introduced the identity linear transformation IV in Section 1.3.1 above.
The identity matrix linear transformation of V = Fn is represented by the n×n
identity matrix In = [IFn ], which has 1’s on its diagonal and 0’s off the diagonal.
(We also may write the identity matrix as I with no subscript or as In,n.)

Identity matrices serve as a multiplicative identities for the matrix arithmetic
of Section 1.5.3 in the strong sense that, for an m× n matrix A,

ImA = A and AIn = A .

1.6.2 Invertible transformation and isomorphisms

If T : V −→ W is a linear transformation of F-vector spaces, then the linear
transformation S : W −→ V is a right inverse of T if ST = IV , a left inverse
of T if TS = IW , and a (2-sided) inverse of T if it is both a right and a left
inverse.

Recall that, by Proposition (1.13), if the linear transformation T has an
inverse as set map, then the inverse is itself a linear transformation.

(1.40). Lemma. (Treil’s Theorem 1.6.1) If T has both a right inverse R and
a left inverse L, then L = R is the unique inverse of T .

Proof. This is an immediate consequence of Lemma (0.1). 2

Thus when T has an inverse, it is unique and is usually denoted T−1.

The following two results should be compared with Propositions (0.6) and
(0.7).
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(1.41). Theorem. Let A : X −→ Y be a linear transformation of F-vector
spaces. Then the following are equivalent:

(1) for every b ∈ Y , there is at least one solution x ∈ X to the equation
A(x) = b;

(2) A is an surjection;

(3) Ran(A) = Y ;

(4) for every generating system G in X, the image of G under A is a generating
system in Y .

Proof. The first three parts are basically restatements of the definitions of
surjection and range. As X always has generating systems, (4) implies (3). On
the other hand, the image under A of any generating system G in X generates
the range of A; so (3) implies (4). 2

(1.42). Theorem. Let A : X −→ Y be a linear transformation of F-vector
spaces. Then the following are equivalent:

(1) for every b ∈ Y , there is at most one solution x ∈ X to the equation
A(x) = b;

(2) A is an injection;

(3) Ker(A) = {0X};

(4) for every linearly independent system I in X, the image of I under A is a
linearly independent system in Y .

Proof. The equivalence of the first two is the definition of injection. For
the equivalence of parts (2) and (3),

A(x0) = A(x1) ⇐⇒ A(x0 − x1) = 0 ⇐⇒ x0 − x1 ∈ Ker(A).

Next (4) implies (3) since if v is a nonzero vector in Ker(A) then [[v]] is a linearly
independent system in X whose image in Y is linearly dependent. Finally, (3)
implies (4) since if I is a linearly independent system in X whose image in
Y is linearly dependent, then the coefficients of that linear dependence give a
nontrivial linear combination of the elements of I that is in Ker(A). 2

(1.43). Problem. Prove that if [[A(x1), . . . , A(xn)]] is linearly independent, then
[[x1, . . . ,xn]] is linearly independent.

Our definition of vector space isomorphism and Treil’s are slightly differ-
ent. In Section 1.2.99 we have defined a vector space isomorphism as a linear
transformation that is bijective; in this section Treil defines a vector space
isomorphism as a linear transformation that is invertible as linear transforma-
tion. The next result, among other things, shows that these two definitions are
equivalent.
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(1.44). Theorem. (Compare with Treil’s Theorems 1.6.6, 1.6.7, and 1.6.8.)
Let A : X −→ Y be a linear transformation of F-vector spaces. Then the follow-
ing are equivalent:

(1) for every b ∈ Y , there is a unique solution x ∈ X to the equation A(x) = b;

(2) A is a bijection;

(3) Ran(A) = Y and Ker(A) = {0X};

(4) for every basis B in X, the image of B under A is a basis in Y .

(5) the image of a basis A under A is a basis in Y ;

(6) A has an inverse B : Y −→ X;

(7) A is an isomorphism.

Proof. The equivalence of the first four parts comes from the previous two
theorems and our definition of vector space isomorphism from Section 1.2.99.
Our definition of vector space isomorphism as a bijective linear transformation
then says that these are equivalent to (7).

If A has an inverse, then it is bijective hence (6) implies (2). Conversely, if
A is an isomorphism, then we saw in Proposition (1.13) that its set inverse is
actually a linear transformation inverse; that is, (7) implies (6).

Clearly (4) implies (5), so we can finish the proof by showing that (5) implies
(3). Assume (5). As the the image of A is a basis of Y , it spans Y hence
Ran(A) = Y . Suppose x =

∑n
i=1 αiai is a nonzero vector in Ker(A) for distinct

ai in A. Then the linearly independent system [[a1, . . . ,an]] in X would have as
its image in Y the linearly dependent system [[A(a1), . . . , A(an)]]. This cannot
happen by (5), so no such x exists and Ker(A) = {0X}. 2

(1.45). Problem. Let A : X −→ Y with Y a finitely generated F-space.
(a) Prove that A is an surjection if and only if A has an right inverse B : Y −→ X.
(b) Prove that A is an injection if and only if A has a left inverse B : Y −→ X.

Again the problem should be compared with Propositions (0.6) and (0.7).
The results of the problem remain true without the assumption of finite genera-
tion, but their proofs rely on the corresponding more general version of Corollary
(1.7) which we proved only in the finitely generated case.

(1.46). Lemma. (Treil’s Theorem 1.6.3) If the linear transformations S : V −→
W and T : W −→ X both are invertible, then TS : V −→ X is invertible and
(TS)−1 = S−1T−1.

Proof.

(TS)(S−1T−1) = T (S(S−1T−1)) = T ((SS−1)T−1) = T (IWT
−1) = TT−1 = IX .

(S−1T−1)(TS) = S−1(T−1(TS)) = S−1((T−1T )S) = S−1(IWS) = S−1S = IV .
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2

The relationship between invertible matrix linear transformations and in-
vertible matrices is as expected. If A ∈ Matm,n(F) then B ∈ Matn,m(F) is a
right inverse of A if AB = Im, a left inverse of A if BA = In, and a (2-sided)
inverse of A if it is both a right and a left inverse, then it is unique (see below)
and is denoted A−1.

(1.47). Lemma.

(a) Let T : Fn −→ Fm be a matrix linear transformation. Then T is invertible
if and only if [T ] is invertible. In this case [T−1] = [T ]−1.

(b) Let A ∈ Matm,n(F). Then A is an invertible matrix if and only if the linear
transformation T : Fn −→ Fm given by T (x) = Ax is invertible. In this case
T−1 is the linear transformation S : Fm −→ Fn given by S(y) = A−1y.

(1.48). Lemma. If the matrix A has both a right inverse R and a left inverse
L, then L = R is the unique inverse of A.

(1.49). Problem.

(a) Prove Lemma (1.47).

(b) Prove Lemma (1.48). (Compare with Lemma (0.1).)

We do not (yet) have a linear transformation interpretation of the transpose,
so the following lemma demands proof.

(1.50). Lemma. (Treil’s Theorem 1.6.5) If the matrix A has an inverse,
then A> has an inverse and (A>)−1 = (A−1)>.

Proof. I = I> = (AA−1)> = (A−1)>A> and I = I> = (A−1A)> =
A>(A−1)>. 2

1.6.3 Isomorphism

This material has been discussed under Section 1.2.99 and the previous Section
1.6.2.

1.6.4 Invertibility and equations

This material has been discussed under Section 1.6.2.
Although the following results occur later in Treil, they naturally accom-

pany the material of Section 1.6.2.

(1.51). Theorem. (Treil’s Theorem 2.6.1) Let A : V −→ W be a linear
transformation, and consider the equation

A(x) = b .

If the equation has a specific solution x0, then the set of all solutions is the coset
x0 + KerA.
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In particular, KerA is the subspace of all solutions to the associated homo-
geneous equation

A(x) = 0 .

Proof. If x0 and x1 both solve the equation, then their difference z =
x1 − x0 solves the associated homogeneous equation and so is in Ker(A). On
the other hand, if a vector z is in that kernel, then x1 = x0+z solves the original
equation. 2

Of particular interest is the matrix version of this result.

(1.52). Theorem. Let A be an m×n matrix from F and consider the equation

Ax = b ,

for a fixed b ∈ Fm. If the equation has a specific solution x0 ∈ Fn, then the set
of all solutions x is the coset x0 + KerA.

In particular, KerA is the subspace of all solutions in Fn to the associated
homogeneous equation

Ax = 0 . 2

1.7 Subspaces

This material has been discussed under Section 1.1.1.

1.8 Application to computer graphics

This material is not part of the course.
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2 Chapter 2: Systems of linear equations

The theme of this chapter is the solution of equations involving linear transfor-
mations and in particular systems of linear equations.

2.1 Different faces of linear systems

A system of m linear equations in n unknowns can be thought of and written
as a single matrix equation

Ax = b

where the m × n matrix A, the coefficient matrix, contains the coefficients of
the system, x = (x1, . . . , xn)> is the vector of unknowns and b = (b1, . . . , bm)>

is the vector of constants (from the righthand side of the equations).
The basic observation is that for invertible E, the set of all x solving

EAx = Eb

is the same as the solution set for the previous matrix equation. We spend a
great deal of time in this chapter looking for matrices E that make this second
equation easier to solve than the firts. Especially we seek E for which EA
contains a lot of entries 0.

At times we consider the associated augmented matrix, which is the m ×
(n+ 1) matrix

(A |b ) ,

written in block matrix form. With the invertible matrix E, the augmented
matrix is transformed into

(EA |Eb ) ,

2.2 Solutions and echelon form

2.2.1 Elementary operations

There are three types of elementary row operations which can be carried out on
the m× n matrix A:

(i) Exchange: exchange rows i and j;

(ii) Scaling: multiply row i by the nonzero constant r;

(iii) Replacement: add s times row j to row i.

The corresponding elementary matrices are:

(i) Exchange: Xi,j—exchange rows i and j of the identity matrix Im;

(ii) Scaling: Si(r) for r 6= 0—multiply row i of Im by the nonzero constant r;

(iii) Replacement: Ri,j(s)—add s times row j of Im to row i.
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Performing an elementary row operation on the matrix A is equivalent to
left multiplying A by the appropriate elementary matrix E.

(2.1). Proposition. Let A be an m× n with entries from F.

(i) Xi,jA is the result of exchanging rows i and j of the matrix A;

(ii) Si(r)A is the result of multiplying row i of A by the nonzero constant r;

(iii) Ri,j(s)A is the result of adding s times row j of A to row i.

Proof. This follows by direct calculation. 2

Further calculation shows that inverses and transposes of elementary matri-
ces are again elementary matrices.

(2.2). Proposition.

(i) Xi,j = X−1i,j = X>j,i.

(ii) Si(r) = Si(r
−1)−1 = Si(r)

> for nonzero r.

(iii) Ri,j(s) = Ri,j(−s)−1 = Rj,i(s)
>. 2

Although we will not need them for a while, the elementary column opera-
tions are found from the elementary row operations by replacing each instance
of the word “row” with “column.” Elementary column operations are carried
out through right multiplication by elementary matrices:

(2.3). Proposition. Let B be an n×m with entries from F.

(i) BXi,j is the result of exchanging columns i and j of the matrix B;

(ii) BSi(r) is the result of multiplying column i of A by the constant r;

(iii) BRi,j(s) is the result of adding s times column i of B to column j.

Proof. Set B = A> in Proposition (2.1). 2

2.2.2 Row reduction and Gaussian elimination

Let A be an m×n matrix with entries from F. The leading entry in the nonzero
row i of A is that nonzero entry ai,j with the smallest j—that is, furthest to
the left. The matrix A is in row echelon form (usually abbreviated to echelon
form and sometimes written REF ) provided:

If ai,j is the leading entry in row i, then al,k = 0 for all i ≤ k ≤ m
and 1 ≤ l ≤ j, except for ai,j 6= 0.
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In particular, a zero matrix is in echelon form. The leading entries of a matrix
in echelon form are the pivot entries or just pivots of the echelon form. The
columns containing pivots are the pivot columns and the remaining columns are
the nonpivot columns or nonpivots.

The process of row reduction or Gaussian elimination starts from an arbi-
trary matrix A and, by a sequence of elementary row operations (that is, by
multiplying on the left by a sequence of elementary matrices) moves the matrix
into row echelon form.

The algorithm is initialized by A1 = A and k = 1.

Step k: if there are no nonzero entries in row k or below

in Ak, stop.

Otherwise, find the leftmost leading entry in one of these

rows and, if necessary, exchange that row with row k of Ak.
Then add multiples of the new row k to all rows from k+ 1
down to ensure that all those rows have 0 in that column.

The resulting matrix is Ak+1.

Set k to k + 1 and continue.

This clearly achieves the desired result. The algorithm is relatively practical,
since its complexity is roughly cubic in the size of the matrix. (See page 92 of
Treil for a more detailed discussion.) Although it is not necessary, it may be
helpful to use various Sk(r−1) to rescale the pivot entry r in nonzero row k to
1, even while still at Step k.

If E is the associated product of elementary matrices achieving row echelon
form R = EA, then the two equations

Ax = b and Rx = Eb

have the same solution sets of x since R = EA for invertible E (by Proposition
(2.2)). As R is echelon form, the second equation is easy to solve, using back-
solving (that is, back substitution) if necessary. That is, solve from the bottom
to the top of R.

Gaussian elimination will also be of theoretical use to us. The first example
of this is:

(2.4). Theorem. Every matrix can be written as the product of a sequence of
elementary matrices and a matrix in echelon form.

Especially, every square matrix can be written as the product of elementary
matrices and an upper triangular matrix and as the product of a lower triangular
matrix and elementary matrices.

Proof. If the echelon form of A is R = EA, then E−1R = A. If A is square,
then R is upper triangular. Also for square B = A>, we have B = SF with
S = R> lower triangular and F = (E−1)> = (E>)−1 a product of elementary
matrices. 2
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2.2.3 Reduced row echelon form

A matrix may have many different row echelon forms. It would be nice to have
one that is more canonical and in the bargain has many 0’s.

The matrix A is in reduced row echelon form (usually abbreviated to reduced
echelon form and sometimes written RREF ) provided:

A is in echelon form and additionally each pivot value ai,j is 1 and,
furthermore, al,j = 0 for all 1 ≤ l < i.

This can be reached by elementary row operations (scaling and replacement)
from any echelon form. This amounts to backsolving prior to attempting the
solution of any equation.

If it is possible get from the matrix A to B in Matm,n(F) via a sequence
of elementary row operations, then A and B are row equivalent. This gives an
equivalence relation on the space of matrices, as defined in 0.4. Gaussian elim-
ination allows us to find, for every matrix A, a matrix B that is row equivalent
to A and in echelon form. In fact, reduced row echelon form is unique. That is,
row reduced echelon form provides a canonical form under row equivalence.

2.3 Counting pivots

The matrix equation Ax = b is consistent if it has solutions, otherwise it is
inconsistent.

The discussion of echelon form gives directly

(2.5). Lemma. A system is inconsistent if and only if there is a pivot in the
last column of an echelon form of its augmented matrix. 2

We mostly focus on echelon form for the coefficient matrix A. In relating the
number of pivots to other matrix properties, the following trivial observation is
crucial.

(2.6). Lemma. A matrix in echelon form has at most one pivot in each row
and at most one pivot in each column. 2

(2.7). Theorem. Let A be an n×m matrix from F, and let R be a row echelon
form for A. We consider solutions x ∈ Fm to the linear matrix equation Ax = b
for the various b ∈ Fn.

(a) For all b the number of solutions x is greater than or equal to 1 if and only
if R has a pivot in every row.

(b) For all b the number of solutions x is less than or equal to 1 if and only if
R has a pivot in every column.

(c) For all b the number of solutions x is exactly equal to 1 if and only if R has
a pivot in every row and every column.
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Proof. (a) There are corresponding augmented matrices with pivots in the
last column if and only if R has some zero rows at its bottom.

(b) The columns without pivots are free. If such columns exist then there
are b admitting many solutions.

(c) This follows from the previous two parts. 2

2.3.1 Dimension

(2.8). Proposition. (Treil’s Proposition 2.3.1) Let v1, . . . ,vm be a system
of vectors from Fn, and construct the matrix A whose column j is vj. Let R be
a row echelon form for A.

(a) The system v1, . . . ,vm is spanning if and only if R has a pivot in every row.

(b) The system v1, . . . ,vm is linearly independent if and only if R has a pivot
in every column.

(c) The system v1, . . . ,vm is a basis if and only if R has a pivot in every row
and every column.

Proof. This comes directly from Theorem (2.7) and Section 1.2.1. 2

(2.9). Proposition. (Treil’s Proposition 2.3.5) In Fn the size of a generating
system is at least n.

Proof. This follows from Lemma (2.6) and Proposition (2.8)(a). 2

(2.10). Proposition. (Treil’s Proposition 2.3.2) In Fn the size of a linearly
independent system is at most n.

Proof. This follows from Lemma (2.6) and Proposition (2.8)(b). 2

(2.11). Proposition. (Treil’s Proposition 2.3.4) In Fn the size of a basis is
n.

Proof. This is a corollary to the last two propositions or to Proposition
(2.8)(c). 2

(2.12). Proposition. (Treil’s Proposition 2.3.3) If v1, . . . ,vn is a basis of
V , then all bases of V have size n.

Proof. As V is isomorphic to Fn by Theorem (1.16) and this isomorphism
takes bases to bases by Theorem (1.44), the result is a corollary to the previous
proposition. 2

A vector space V with a finite basis has all bases of size n by Proposition
(2.12). This number n is the dimension of V, denoted dimF V . Our convention
(and that of Treil) is that any vector space not of finite dimension is said to
have infinite dimension. (More precise statements can be made, but we do not
pursue this.)

From Theorem (1.16) and Propositions (2.9) and (2.10) we get immediately:

38



(2.13). Proposition. (Treil’s Proposition 2.5.3) If dimF V = n, then every
generating system in V has greater than or equal to n elements. 2

(2.14). Proposition. (Treil’s Proposition 2.5.2) If dimF V = n, then every
linearly independent system in V has less than or equal to n elements. 2

2.3.2 Invertible matrices

(2.15). Proposition. (See Treil’s Proposition 2.3.6) For the matrix A ∈
Matm,n(F) with echelon form R, the following are equivalent:

(1) A is invertible;

(2) for all b ∈ Fm the number of solutions x ∈ Fn to Ax = b is exactly equal
to 1;

(3) R has a pivot in each row and each column;

(4) the reduced row echelon form of A is Im = In;

(5) the columns of A form a basis of Fm.

Proof. The first two are equivalent by Theorem (1.44) (in the language of
linear transformations). The second and third are equivalent by Theorem (2.7).
The third is clearly equivalent to the fourth and is equivalent to the last by
Proposition (2.8). 2

In particular (4) gives an important result mentioned earlier:

(2.16). Corollary.

(a) (See Treil’s Corollary 2.3.7) Invertible matrices must be square.

(b) (See Treil’s Theorem 2.4.1) Indeed every invertible matrix is a product of
elementary matrices.

Proof. If A has In as row reduced echelon form, then there is a product
E of elementary matrices with EA = In whence A = E−1 is a product of
elementary matrices (by Lemma (1.46) and Proposition (2.2)). 2

(2.17). Proposition. (See Treil’s Proposition 2.3.8) For A a square matrix,
the following are equivalent:

(1) A is left invertible;

(2) A is right invertible;

(3) A is invertible.
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Proof. Of course, if A is invertible then it is also left invertible and right
invertible.

Now consider square matrices B and C with BC = I, so that C has left
inverse B and B has right inverse C. Every equation Cx = b then has the
unique solution x = Bb, so by the previous proposition, C is invertible. But
then, as in Lemmas (0.1) and (1.40), both B and C are invertible, being inverses.
Let A first be B and then C to complete the proof. 2

Lemma (1.46) says that, for A and B invertible, the product AB is also
invertible. We have a partial converse.

(2.18). Corollary. If A and B are square and their product AB is invertible,
then A and B are invertible.

Proof. Let C be the inverse of AB. As (AB)C = I = C(AB), A has the
right inverse BC and B has the left inverse CA. 2

2.4 Finding inverses

To calculate the inverse of invertible n×n matrix A, begin with the block m×2m
matrix

(A | I) .

Then for any matrix E we have

E (A | I) = (EA |E) .

In particular for invertible A the reduced row echelon form of (A | I) is

E (A | I) = (EA |E) = ( I |E) =
(
I |A−1

)
by Proposition (2.17), and the inverse matrix A−1 = E has been found con-
cretely as a product of elementary matrices.

2.5 Dimension

This material material has been discussed under Sections 1.2.1 and 2.3 above.

2.5.1 Completion to a basis

A nonconstructive version of Treil’s Proposition 2.5.4 was given in Corollary
(1.7). We will return to a constructive version in Section 2.7.4.

2.6 General solution

This material has been discussed in part under Sections 1.6.4 and 2.2.2 above.
What remains to be observed here is that in the process of completing the
solution via backsolving, we have the following:
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(2.19). Proposition. Consider a system of linear equations with matrix
form

Ax = b

that has solutions, as in Theorem (1.52).
The following numbers are equal:

(1) The number of free variables in the general solution of the system.

(2) The number of nonpivot columns in an echelon form of A.

(3) The dimension of kerA. 2

2.7 Fundamental subspaces and rank

Earlier we associated to any linear transformation T : V −→W two spaces:

Ker(T ) = {v ∈ V | T (v) = 0W } ≤ V and Ran(T ) = {T (v) | v ∈ V } ≤W ,

the kernel and range of T .
In Theorem (1.51) we decided that, for a linear transformation A and for

each b ∈ Ran(A), the set of solutions x to the equation A(x) = b is the coset
x0 + KerA, for an individual solution x0. This suggests a result of the shape

dim Ran(A) + dim Ker(A) = dimV ,

and we confirm this below in various forms.

For the matrix transformation of multiplication by an m×n matrix A, these
are two of four fundamental subspaces:

• The column space of A, CS(A) is the subspace of Fm spanned by the
columns of A. Its dimension is the column rank of A. In terms of the
matrix linear transformation x 7→ Ax, we have CS(A) = Ran(A).

• The (right) null space of A, NS(A) is the subspace of all x ∈ Fn with
Ax = 0. Its dimension is the (right) nullity of A. In terms of matrix
linear transformations, NS(A) = Ker(A).

• The row space of A, RS(A) is the subspace of Fn = Mat1,n(F) spanned
by the rows of A. Its dimension is the row rank of A. We have RS(A) =
(CS(A>))>.

• The left null space of A, LNS(A) is the subspace of of all w ∈ Fm =
Mat1,m(F) with wA = 0. Its dimension is the left nullity of A. We have
LNS(A) = (NS(A>))>.

Rather than these two final spaces, Treil prefers to discuss their isomorphic
transposed spaces CS(A>) and NS(A>).

A basic result is
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(2.20). Theorem. Let E be an invertible m ×m matrix, and A an m × n
matrix.

(a) NS(A) = NS(EA).

(b) RS(A) = RS(EA).

(c) dimF CS(A) = dimF CS(EA).

(d) dimF LNS(A) = dimF LNS(EA).

Proof.

(a) Ax = 0 if and only if EAx = 0, therefore NS(A) = NS(EA).

(b) Set y = wE. yA = v if and only if wEA = v, therefore RS(A) = RS(EA).

(c) The map w 7→ Ew is an isomorphism of CS(A) and CS(EA), therefore
dimF CS(A) = dimF CS(EA).

(d) The map y 7→ yE is an isomorphism of LNS(EA) and LNS(A), therefore
dimF LNS(A) = dimF LNS(EA). 2

This immediately gives:

(2.21). Corollary. Let R be an echelon form of A.

(a) RS(A) = RS(R).

(b) dimF CS(A) = dimF CS(R). 2

(2.22). Theorem. (See Treil’s Theorem 2.7.1) The column rank of A is equal
to the row rank of A.

Proof. By Corollary (2.21) we only need prove this for matrices in echelon
form. But in that case, both dimensions equal the number of pivots. 2

We therefore may define rank(A), the rank of A, to be the common value of
its column and row rank. Treil defines rank(A) to the the column rank of A.
Thus from his point of view this theorem states that

(2.23). Corollary. (Treil ’s Theorem 2.7.1) A and A> have the same rank.
2

In any event, the rank, column rank, and row rank of A are all the same.
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2.7.1 Calculation

We wish to find explicitly a basis for each of the fundamental subspaces of the
m × n matrix A with entries from F. Let R be an echelon form of A with
R = EA for invertible E.

(I) NS(A): This is not new for us, since it is just the kernel of A; that is, the
set of all solutions to Ax = 0. We solved such matrix equations easily by
passing to the echelon form and noting that Rx = 0 has the same set of
solutions x.

(II) RS(A): By Corollary (2.21)(a) above, a basis for RS(A) = RS(R) consists
of the nonzero rows of the echelon form R for A.

(III) CS(A): The map E : w 7→ Ew is an isomorphism of CS(A) and CS(R) =
CS(EA). As the pivot columns of R are a basis of CS(R), the images
of these pivot columns under E−1 are columns of A that form a basis
of CS(A). That is, the columns of A in the same positions as the pivot
columns of R form a basis of CS(A).

(IV) LNS(A): This is a little trickier, and Treil does not really discuss it.
However it turns out (exercise!) that if the zero rows of R are its last r
rows, then the last r rows of E form a basis of LNS(A).

2.7.2 Explanation

Given above.

2.7.3 The rank theorem

(2.24). Theorem. (Rank plus nullity: Treil’s Theorem 2.7.2) Let A be an
m× n matrix over F.

(a) dimF CS(A) + dimF NS(A) = n.

(b) dimF RanA+ dimF KerA = n.

(c) dimF RS(A) + dimF LNS(A) = m.

(d) dimF RanA> + dimF KerA> = m.

Proof. For the first part, we note that the rank dimF CS(A) is the number
of pivot columns in the echelon form R while the nullity dimF NS(A) is the
number of nonpivot columns by Proposition (2.19).

The second part is the first, rephrased using linear transformation language.
The last two parts are just the first two applied to the transpose A>. 2

(2.25). Corollary. (Treil’s Theorem 2.7.3) Let A be an m×n matrix over
F. The equation

Ax = b
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has a solution x for every b ∈ Fm if and only if the dual equation

A>y = 0

has only the trivial solution y = 0.

Proof. Exercise. 2

(2.26). Problem. Prove the corollary.

2.7.4 Completion to a basis

We know by Corollary (1.7) that every linearly independent subset of a vector
space Fn can be completed to a basis. Here is presented a concrete way of doing
that. Namely, write the linearly independent m-set as the rows of an m × n
matrix A. Then put A into an echelon form R. Then there are n−m nonpivot
(“free”) columns. Add any set of n−m vectors with the property that, for each
nonpivot column, there is exactly one new vector whose leading entry is in that
column. (For example, one can choose vectors that are all 0 except for a single
1 in a nonpivot column.) These vectors combined with the original m vectors
gives n = m + (n − m) vectors that (transposed) form a basis (since the row
space of R is equal to the row space of E, and these vectors clearly complete
the rows of R to a basis).

2.8 Matrix representation

2.8.1 Matrix representation of vector spaces

We recast our earlier observation Theorem (1.16). Let V be an F-space with
basis A = [[a1, . . . ,an]]. Then for

v =

n∑
j=1

αjaj

we write
[v]A = (α1, . . . , αn)> ,

the coordinate vector of v for A. Especially if V = Fn then v = [v]E where E is
the standard basis of Fn.

(2.27). Theorem. The map

κA : v 7→ [v]A

gives an isomorphism of V and Fn. 2
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2.8.2 Matrix representation of linear transformations

Let T : V −→ W be a linear transformation. Further let A = [[a1, . . . ,an]] be a
basis of V and B a basis of W .

Define
[T ]BA

to be the m× n matrix whose column j is

[T (aj)]B .

Then

(2.28). Proposition. [T ]BA is the unique matrix with [T (v)]B = [T ]BA[v]A
for all v ∈ V .

Proof. Just as Theorem (2.27) is a more formal version of the earlier
Theorem (1.16), so this result follows on from Lemma (1.25) and the remarks
surrounding it.

Under the circumstances of the proposition, the map S = κBTκ
−1
A is a linear

transformation from Fn to Fm (for the appropriate dimensions of V and W ).
This is a matrix linear transformation, so by Lemma (1.25) there is a unique
matrix [S] = [κBTκ

−1
A ] that represents it. As in Section 1.3.2, column j of [S]

is the vector

(κBTκ
−1
A )(ej) = (κBT )(κ−1A (ej)) = (κBT )(aj) = κB(T (aj)) = [T (aj)]B .

That is, [κBTκ
−1
A ] = [T ]BA, as claimed. 2

This result and its proof can be nicely expressed in terms of commutative
diagrams. Specifically, given the linear transformation T : V −→ W and bases
A of V and B of W , the result says that the partial diagram of linear transfor-
mations

W
T←−−−− V

κB

y κA

y
Fm Fn

completes uniquely to the commutative diagram of linear transformations

W
T←−−−− V

κB

y κA

y
Fm ←−−−−

[T ]BA
Fn

.

The proof makes use of Lemma (1.25), which is really just the special case of
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matrix linear transformations:

Fm S←−−−− Fn∥∥∥ ∥∥∥
Fm ←−−−−

[S]
Fn

.

We have the following important extension of the “rank plus nullity” Theo-
rem (2.24).

(2.29). Theorem. Let T : V −→W be a linear transformation between finite
dimensional vector spaces over F. Then

dimF KerT + dimF RanT = dimF V .

Proof. This is now immediate from Theorem (2.24)(a). 2

In keeping with our earlier definitions, the rank of a linear transformation is
the dimension of its range, while its nullity is the dimension of its kernel.

(2.30). Proposition. If additionally S : W −→ X with C a basis of X, then

[ST ]CA = [S]CB[T ]BA .

Proof. By Proposition (2.28) the partial diagram

X
ST←−−−− V

κC

y κA

y
Fl Fn

completes uniquely to the commutative diagram

X
ST←−−−− V

κC

y κA

y
Fl ←−−−−−

[ST ]CA
Fn

.

On the other hand we can glue two commutative diagrams together to get a
larger commutative diagram:

X
S←−−−− W

T←−−−− V

κC

y κB

y κA

y
Fl ←−−−−

[S]CB
Fm ←−−−−

[T ]BA
Fn

.

By the uniqueness of the first completion, we conclude

[ST ]CA = [S]CB[T ]BA . 2
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2.8.3 Change of coordinates for vector spaces

Assume V = W and specialize Proposition (2.28) to the case T = IV . Then we
find

[v]B = [I(v)]B = [I]BA[v]A .

That is, the matrix
[I]BA

is the change of coordinates (or change of basis or base change) matrix for V ,
from the basis A to the basis B.

As [I]AA = [I]BB = I, we have

[I]AB = [I]−1BA .

For instance, if V = Fn then always v = [v]E for the standard basis E of Fn,
so [I]EA is easy to find: its column j is aj . Then [I]AB can be calculated via

[I]AB = [I]AE [I]EB = [I]−1EA[I]EB .

2.8.4 Change of coordinates for linear transformations

Let T : V −→W with A and C bases of V and B and D bases of W. Then using
change of coordinate matrices for V and W , we can “change coordinates” for
T :

[T ]DC = [I]DB[T ]BA[I]AC .

2.8.5 Similarity of matrices

If above we take V = W , A = B, and C = D, then we find

[T ]CC = [I]CB[T ]BB[I]BC = [I]−1BC [T ]BB[I]BC = Q−1[T ]BBQ ,

where Q = [I]BC .
Two square matrices A and B are similar if there is an invertible matrix Q

with
B = Q−1AQ whence A = (Q−1)−1BQ−1 .

In this case, Q may be thought of as a base change matrix.
Similarity gives an equivalence relation on the set of square matrices. The

members of a class can be thought of as representing the same linear transfor-
mation but with respect to different bases for the associated space V . Canonical
form theory then has the goal of finding “nice” matrices representing a given
linear transformation—particularly matrices containing lots of zeros, with diag-
onal matrices as the grail. Such issues are a focus for Chapter 4.
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3 Chapter 3: Determinants

The determinant is, at its most basic, a function from the set of all n×n matrices
over F to F having properties that are important, particularly in the context of
linear algebra. At a more general level it provides a concept of volume (area)
that is not restricted by dimension or field of definition.

3.1 Introduction

The best known case of the determinant is that of 2× 2 matrices:

det

(
a c
b d

)
= ad− bc.

Pleasant geometric arguments show that this is the area in the real plane of
the parallelogram with adjacent sides given by the two vectors (a, b) and (c, d)
(although your answer may turn out to be bc − ad = −(ad − bc), depending
upon the placement of the two vectors).

The geometry of 2× 2 space and also the above formula confirm three prop-
erties:

(1) (i) The area of the parallelogram bounded by r(a, b) and (c, d) is r times
the area of the parallelogram bounded by (a, b) and (c, d).

(ii) The area of the parallelogram bounded by (a, b) and (c + e, d + f) is
the sum of the area of the parallelogram bounded by (a, b) and (c, d)
and the area of the parallelogram bounded by (a, b) and (e, f).

(2) The area of the parallelogram bounded by (a, b) and any scalar multiple
α(a, b) is 0.

(3) The parallelogram bounded by (1, 0) and (0, 1) is the unit square of area 1.

Area in dimension 2 corresponds to volume in dimension 3. In calculus and
elsewhere the determinant of an n×n matrix is viewed as a (generalized, signed)
volume, giving the volume of the n-parallelepiped bounded by a given set of n
vectors at the origin. We will characterize the determinant as a generalized
volume having properties extending the three above.

We have regularly considered the matrix A from Matm,n(F) as the n-tuple
(system) A = (a1, . . . ,aj , . . . ,an), where aj is column j of A. In doing so, we
are making an unspoken appeal to the natural vector space isomorphism

η : Matm,n(F) −→ (Fm)n ,

this last space consisting of row n-tuples whose individual entries are column
vectors from Fm. For instance the correspondence

η

((
a c
b d

))
=

((
a
b

)
,

(
c
d

))
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played a role in our discussion of 2× 2 determinants and planar area above.
In our discussion and development of determinant functions and determi-

nants, we shall take both views of the n×n matrices under consideration. Specif-
ically, we will consider determinant functions D : (Fn)n −→ F, taking n-tuples
of vectors from Fn to F and the related matrix functions d : Matn,n(F) −→ F,
the correspondence formally given by D(η(A)) = d(A). For instance

det

(
a c
b d

)
= ad− bc = Det

((
a
b

)
,

(
c
d

))
.

3.2 Properties determinant functions should have

In this section we consider “volume-like” functions taking n-tuples of vectors
from Fn to F. We call these determinant functions.

We consider determinant-like functions D : (Fn)n −→ F that satisfy the
following natural generalizations of the first two “volume-like” properties of the
previous section:

(I) (n-Linear) Always D(v1, . . . ,vk−1, ru + sw,vk+1, . . . ,vn)
= rD(v1, . . . ,vk−1,u,vk+1, . . . ,vn)+sD(v1, . . . ,vk−1,w,vk+1, . . . ,vn) .

(II) (Flat) Always D(v1, . . . ,vi−1,v,vi+1, . . . ,vj−1,v,vj+1, . . . ,vn) = 0 .

These can be restated:

(I) (n-Linear) If we fix n− 1 of the arguments of D, then D is linear in the
remaining argument.

(II) (Flat) When two arguments of D are set equal, the value of D is 0.

The following lemma describes the effect of elementary column operations
on a determinant function. (See Proposition (2.3).) These properties also in-
clude those with which Treil §3.2 characterizes the determinant. In particular,
Treil prefers the Antisymmetry Condition (3.1)(a) to our Flatness Condition
(II). Provided the characteristic of F is not 2, Antisymmetry implies Flatness,
since −d = d if and only if d = 0. In the other direction, Flatness always
Antisymmetry regardless of characteristic, as we see in the lemma.

(3.1). Lemma. Let D : (Fn)n −→ F have (I) and (II). Then always

(a) (Exchange: antisymmetry)For i 6= j,
D(v1, . . . ,vi−1,u,vi+1, . . . ,vj−1,w,vj+1, . . . ,vn)
= −D(v1, . . . ,vi−1,w,vi+1, . . . ,vj−1,u,vj+1, . . . ,vn) .

(b) (Scaling)
D(v1, . . . ,vk−1, ru,vk+1, . . . ,vn) = rD(v1, . . . ,vk−1,u,vk+1, . . . ,vn) .

(c) (Column replacement) For j 6= k,

D(v1, . . . ,vk−1,u + svj ,vk+1, . . . ,vn) = D(v1, . . . ,vk−1,u,vk+1, . . . ,vn) .
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Proof. (a) (II) with v = u + w then (I) four times and (II) twice again.
(b) (I) with w = 0.
(c) By (b) and (II) D(v1, . . . ,vk−1, svj ,vk+1, . . . ,vn) = 0, so this follows

from (I). 2

The following easy consequences may be used without reference.

(3.2). Corollary. Always

(a) D(v1, . . . ,vk−1,0,vk+1, . . . ,vn) = 0 .

(b) D(v1, . . . ,vi−1,v,vi+1, . . . ,vj−1, rv,vj+1, . . . ,vn) = 0 . 2

(3.3). Corollary. If the system [[v1, . . . ,vj , . . . ,vn]] is linearly dependent,
then D(v1, . . . ,vj , . . . ,vn) = 0.

Proof. This follows from the last part of the lemma and Proposition (1.5).
2

The following technical result will also be of use.

(3.4). Lemma. Let D have properties (I) and (II). Then

D(v1, . . . ,vi−1,vi,vi+1, . . . ,vj−1,vj ,vj+1, . . . ,vn)

= (−1)i+jD(v1, . . . ,vi−1,vj ,vi,vi+1, . . . ,vj−1,vj+1, . . . ,vn)

= (−1)i+jD(v1, . . . ,vi−1,vi+1, . . . ,vj−1,vj ,vi,vj+1, . . . ,vn) .

Proof. Note that (−1)j−i = (−1)j−i(−1)2i = (−1)i+j . The proof is by
induction on k = j − i, the number of steps from i to j. Lemma (3.1)(a) gives
the initialization case k = 1 and also for k > 1

D(v1, . . . ,vi−1,vi,vi+1, . . . ,vj−1,vj ,vj+1, . . . ,vn)

= −D(v1, . . . ,vi−1,vi,vi+1, . . . ,vj ,vj−1,vj+1, . . . ,vn) ,

and
D(v1, . . . ,vi−1,vi,vi+1, . . . ,vj−1,vj ,vj+1, . . . ,vn)

= −D(v1, . . . ,vi−1,vi+1,vi, . . . ,vj−1,vj ,vj+1, . . . ,vn) .

The result then follows by induction. 2

As seen in the proof, we can think of the result as saying:

When you move one element of the system [[v1, . . . ,vj , . . . ,vn]] to
another spot, the determinant changes by the factor (−1)k, where k
is the number of elements in the system that you have jumped.
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3.3 Existence, uniqueness, and properties of determinants

The most familiar example of a determinant function is the matrix determinant
det : Matn,n(F) −→ F, where, as before, we view a matrix as the list of its
column vectors.

We shall say that a function d : Matn,n(F) −→ F has properties (I) and (II) if
its associated vector function D (= dη−1) has properties (I) and (II). The basic
result is:

(3.5). Theorem. There is a unique function det with (I) and (II) and addi-
tionally having

det(In) = 1 .

We will prove the theorem and, along the way, find various properties of the
determinant and several ways of calculating it.

The proof of the theorem falls naturally into two parts—existence and unique-
ness. There are (at least) four familiar ways to calculate a determinant:

• row expansion (row development);

• column expansion (column development);

• permutation sum;

• elementary column or row operations.

We prove existence using row expansion and uniqueness using elementary col-
umn operations. Later we discuss all the methods of calculation.

Authors typically use one of these methods of calculation as the initial def-
inition of the determinant. Although Treil develops the theory by using gen-
eralized volume, determinant functions, and elementary operations, his actual
definition (in his Section 3.3.4) is via the permutation sum. We instead use row
expansion on the first row as our initial definition, although ultimately we see
that all are equivalent.

3.3.1 Existence of determinants

We show that determinant functions and determinants do exist. Uniqueness
will then be proven in the next section.

If A is an n×n matrix, then A(i,j) is its (n−1)×(n−1) submatrix constructed
by dropping row i and column j from A.

(3.6). Proposition. (First row expansion) The function detn : Matn,n(F) −→
F defined by det1(r) = r (when n = 1) and for larger n iteratively by

detn(A) =

n∑
j=1

(−1)1+ja1jdetn−1(A(1,j)) .

has (I) and (II) and detn(In) = 1.
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Proof. The proof is by induction on n. The function det1 (with det1(1) =
1) certainly has (I), and (II) holds vacuously for n = 1. Now assume n > 1.

(I) Let ak = ru + sw with u =
∑n
i=1 biei and w =

∑n
i=1 ciei. Set

B = [[a1, . . . ,ak−1,u,ak+1, . . . ,an]]

and
C = [[a1, . . . ,ak−1,w,ak+1, . . . ,an]] .

We prove that
detn(A) = rdetn(B) + sdetn(C) ,

by considering the individual terms for each j in the expansion (definition) of

detn(A) = detn(a1, . . . ,ak−1, ru + sw,ak+1, . . . ,an) .

If j 6= k, then

detn−1(A(1,j)) = r detn−1(B(1,j)) + sdetn−1(C(1,j))

by induction and property (I) for detn−1. Multiply throughout by the constant
(−1)1+ja1j to get the terms

(−1)1+ja1jdetn−1(A(1,j)) = r(−1)1+ja1jdetn−1(B(1,j))+s(−1)1+ja1jdetn−1(C(1,j)) .

On the other hand for j = k we have a1k = rb1+sc1 and A(1,k) = B(1,k) = C(1,k),
so that also

(−1)1+ka1kdetn−1(A(1,k)) = r(−1)1+kb1detn−1(B(1,k))+s(−1)1+kc1detn−1(C(1,k)) .

Therefore term-by-term

detn(A) = rdetn(B) + sdetn(C) ,

as desired and giving (I).

(II) We must examine

detn(A) = detn(a1, . . . ,ai−1,a,ai+1, . . . ,ak−1,a,ak+1, . . . ,an)

with ai = ak = a. Again we consider the individual terms for each j.

If j /∈ {i, k}, then A(1,j) contains the repeated column a
(1)
i = a(1) = a

(1)
k

(the various columns with their first entries deleted). Thus for these j we have
detn−1(A(1,j)) = 0 by (II) for detn−1.

For j ∈ {i, k}, the submatrices A(1,i) and A(1,k) are the same except that the
vector a(1) is in different positions—the first contains the column subsequence

. . . ,a
(1)
i−1,a

(1)
i+1, . . . ,a

(1)
k−1,a

(1),a
(1)
k+1 . . .

and the second
. . . ,a

(1)
i−1,a

(1),a
(1)
i+1, . . . ,a

(1)
k−1,a

(1)
k+1 . . . .
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From Lemma (3.4) we find

detn−1(A(1,i)) = (−1)i+k−1detn−1(A(1,k)) .

Also since ai = ak = a we have a1i = a1k. Combining all the terms, we have

detn(A) =

n∑
j=1

(−1)1+ja1jdetn−1(A(1,j))

= (−1)1+ia1idetn−1(A(1,i)) + (−1)1+ka1kdetn−1(A(1,k))

= a1k

(
(−1)1+i(−1)i+k−1detn−1(A(1,k)) + (−1)1+kdetn−1(A(1,k))

)
= 0 .

This gives (II).

Finally for A = In we have a11 = 1 and a1j = 0 for j > 1. Also A(1,1) = In−1,
so

detn(In) =

n∑
j=1

(−1)1+ja1jdetn−1(A(1,j)) = (−1)1+1 · 1 · detn−1(A(1,1))

= 1 · 1 · detn−1(In−1) = 1 ,

as claimed. 2

3.3.2 Uniqueness of determinants

As an immediate consequence of Gaussian elimination, we find in Theorem (2.4)
that every matrix is the product of elementary matrices and a matrix in echelon
form. In particular, every square matrix is the product of elementary matrices
followed by an upper triangular matrix (0’s below the diagonal). By transposing,
we then have that every square matrix can be written as the product of a lower
triangular matrix followed by a product of elementary matrices.

(3.7). Theorem. Let det : Matn,n(F) −→ F be a function satsifying (I) and
(II) and additionally having det(In) = 1.

(a) det(Xi,j) = −1; det(Si(r)) = r; det(Ri,j(s)) = 1.

(b) If T ∈ Matn,n(F) is a triangular matrix, then det(T ) is the product of the
diagonal entries of T .

(c) For A ∈ Matn,n(F), let A = T
∏k
i=1Ei where T is a triangular matrix and

the Ei are elementary matrices. Then det(A) = det(T )
∏k
i=1 det(Ei).

Before discussing the proof of this we observe an immediate corollary.

(3.8). Corollary. For every n there is at most one function det : Matn,n(F) −→
F satsifying (I) and (II) and additionally having det(In) = 1.
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Proof. Indeed, using the theorem and the remarks that precede it, we can
calculate all the values of such a function. 2

This is uniqueness for the determinant. What is not clear from this result
is that such a function exists. It is conceivable that different factorizations
A = T

∏k
i=1Ei = T ′

∏k
i=1E

′
i give conflicting values det(T )

∏k
i=1 det(Ei) and

det(T ′)
∏k
i=1 det(E′i), in which case the function would not be well-defined and

so cannot exist. Luckily Proposition (3.6) prevents this:

Proof of Theorem (3.5).
A determinant map det = detn exists for all n by Proposition (3.6) and is

unique by Corollary (3.8). 2

Having discussed these important consequences, we now proceed to the proof
of Theorem (3.7).

Throughout the remainder of Section 3.3, we consider a function

det : Matn,n(F) −→ F

that has (I) and (II) and additionally det(In) = 1. We shall at times refer to this
function as “the determinant” although we do not yet know that it is unique.

3.3.3 Diagonal and triangular matrices

See Proposition (3.10) of the next section.

3.3.4 Calculation of determinants using elementary operations

(3.9). Lemma. Let A be an n× n matrix over F.

(a) (Exchange)For i 6= j, det(AXi,j) = − det(A).

(b) (Scaling) det(ASk(r)) = r det(A), for 0 6= r ∈ F.

(c) (Column replacement) For j 6= k, det(ARj,k(s)) = det(A).

Proof. This is Lemma (3.1) rewritten in matrix terms. 2

(3.10). Proposition. The determinant of a triangular matrix is the product
of its diagonal entries.

Proof. If none of the diagonal entries are 0, then multiplication by column
replacement matrices as in Lemma (3.9)(c) leave the determinant unchanged
while moving to a diagonal matrix with the same nonzero diagonal entries. The
determinant of this diagonal matrix is the product of its diagonal entries by
scaling as in Lemma (3.9)(b).

If there are 0’s on the diagonal, then the first diagonal 0 is in a nonpivot
column of the eventual echelon form, so the matrix is not of full rank. But then
its determinant is 0 by Corollary (3.3). 2
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(3.11). Proposition. Let det : Matn,n(F) −→ F be a function satsifying (I)
and (II) and additionally having det(In) = 1.

(a) det(Xi,j) = −1; det(Si(r)) = r; det(Ri,j(s)) = 1.

(b) For A ∈ Matn,n(F), let A = B
∏k
i=1Ei where B ∈ Matn,n(F) and the Ei

are elementary matrices. Then det(A) = det(B)
∏k
i=1 det(Ei).

Proof. The first part comes from Lemma (3.9) with A = In. The same
lemma and (a) then give the case k = 1 of (b) at which point the rest follows
by induction on k. 2

Proof of Theorem (3.7).
This is immediate from Propositions (3.10) and (3.11). 2

3.3.5 Some nice determinant properties

(3.12). Proposition. A square matrix is invertible if and only if its deter-
minant is nonzero.

Proof. From Theorem (2.4) we get A = T
∏k
i=1Ei, where T is a triangular

matrix and the Ei are elementary matrices. By Theorem (3.7) the matrix A
is invertible if and only if T is invertible, and the proposition follows from
Proposition (3.10). 2

(3.13). Theorem. Let A and B be square matrices with entries from the field
F. Then det(AB) = det(A) det(B).

Proof. If A or B is not invertible, then AB is also not invertible by Corol-
lary (2.18). In that case both sides of the equality are 0 by the previous propo-
sition.

We may now assume that A and B are invertible. By Corollary (2.16) we

have A =
∏k
i=1Ei and B =

∏l
j=1 Fj for elementary matrices Ei and Fj . Of

course AB =
∏k
i=1Ei

∏l
j=1 Fj , so the equality follows from the last part of

Theorem (3.7). 2

The previous theorem gives one of the most important properties of the
determinant. Indeed there are places where this property, together with the re-
quirement (as in Proposition (3.10)) that a diagonal matrix have the product of
its diagonal entries as determinant, is used as the definition of the determinant.

(3.14). Theorem. Let A be a square matrix with entries from the field F.
det(A) = det(A>).

Proof. By Proposition (3.12) we need only consider matrices A that are
invertible. By Theorem (2.16) A =

∏m
i=1Ei as a product of elementary matrices.

Then A> =
∏1
i=mE

>
i . Every elementary matrix is either triangular or equal

to its own transpose, hence detEi = detE>i (by Proposition (3.10)). Thus this
theorem follows from the previous one. 2
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3.3.6 Summary of properties of determinants

(1) The determinant is linear in each column (resp., row) when the other
columns (resp., rows) are fixed: (I) and Theorem (3.14).

(2) The exchange of two columns (resp., rows) negates the determinant: Lemma
(3.9)(a) and Theorem (3.14).

(3) The determinant of a triangular matrix is the product of the diagonal en-
tries: Proposition (3.10).

(4) If a matrix has a zero column or row, then it has determinant 0: Corollary
(3.2)(a) and Theorem (3.14).

(5) If a matrix has two equal columns or rows, then it has determinant 0: (II)
and Theorem (3.14).

(6) If one of the columns (resp., rows) of a matrix is a linear combination of
the remaining columns (resp., rows), then the matrix has determinant 0:
Corollary (3.3) and Theorem (3.14).

(7) det(A) = 0 if and only if A is not invertible: Proposition (3.12).

(8) det(A) 6= 0 if and only if A is invertible: Proposition (3.12).

(9) The determinant is not changed by column (resp., row) replacement: Lemma
(3.9)(c) and Theorem (3.14).

(10) det(A) = det(A>): Theorem (3.14).

(11) det(AB) = det(A) det(B): Theorem (3.13).

(12) If A is n× n, then det(aA) = an det(A): Lemma (3.9)(b) (n times).

3.4 Permutation sum expansion

Let E = [[e, . . . , en]] be the standard basis of Fn. For A = (ai,j)i,j ∈ Matn,n(F)
we have

det(A) = det(a1, . . . ,aj−1,aj ,aj+1, . . . ,an)

=

n∑
i=1

aij det(a1, . . . ,aj−1, ei,aj+1, . . . ,an)

by n-linearity (I). If instead we write every aj as a linear combination of basis
elements from E and then expand in every coordinate, we arrive at

det(A) =

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

ai1,1ai2,2 · · · ain,n det(ei1 , ei2 , . . . , ein) ,
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which can be better written as

det(A) =
∑

ϕ∈Fun(n)

 n∏
j=1

aϕ(j),j

 det(eϕ(1), eϕ(2), . . . , eϕ(n)) ,

where Fun(n) is the set of all functions from {1, . . . , n} to {1, . . . , n}. Calculation
of the determinant is thus reduced to finding

det(eϕ(1), eϕ(2), . . . , eϕ(n))

for the various ϕ ∈ Fun(n).
Many of these are easy to calculate. If different a and b have ϕ(a) = ϕ(b),

then [[eϕ(1), eϕ(2), . . . , eϕ(n)]] contains a repeat and det(eϕ(1), eϕ(2), . . . , eϕ(n)) =
0 by (II). Therefore we need only sum over the set of functions that are bijections
of {1, . . . , n} with itself. This is the set Perm(n) of all permutations of {1, . . . , n}.

For a permutation σ, a sequence of “column exchange” operations turns
the list [[eσ(1), eσ(2), . . . , eσ(n)]] into [[e1, e2, . . . , en]], the n × n identity matrix.
Therefore by Lemma (3.1)(a)

det(eσ(1), eσ(2), . . . , eσ(n)) = (−1)k det(e1, e2, . . . , en) = (−1)k · 1 = (−1)k ,

where k is the number of exchanges made.
The number (−1)k is called the sign (or signum) of the permutation σ and

is denoted sgn(σ). There may be many different sequences of exchanges that
move us from [[eσ(1), eσ(2), . . . , eσ(n)]] to [[e1, e2, . . . , en]], but they all must have
the same sign by Theorem (3.5) and the above. 6 That is, if one sequence for σ
contains an odd number k of exchanges, then all sequences for σ have an odd
number of exchanges (although not necessarily k). In this case σ is called an
odd permutation. On the other hand, if one sequence for σ uses an even number
of exchanges then they all do, and σ is an even permutation.

This discussion proves

(3.15). Theorem. (Permutation sum expansion) Let A = (aij)ij be an n×n
matrix with entries from the field F. Then

det(A) =
∑

σ∈Perm(n)

sgn(σ)

n∏
j=1

aσ(j),j . 2

3.5 Column and row expansion

(3.16). Theorem. (Column expansion) Let A = (aij)ij be an n × n matrix
with entries from the field F. Then for every column index j

det(A) =

n∑
i=1

(−1)i+jaij det(A(i,j)) .

6Note that since Treil uses the permutation sum to demonstrate formal existence of the
determinant, he must (unlike us) independently prove that sgn is well-defined. He discusses
this on page 88.
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Proof. For column j = 1 this follows from first row expansion (Proposition
(3.6)) and the invariance of determinant under transpose (Theorem (3.14)).

Let B be the matrix A with column j of A moved to column 1 of B with
the remaining columns sliding to the right. Then always ai,j = bi,1 and A(i,j) =
B(i,1).

Thereofore by Lemma (3.4) and the column 1 case,

det(A) = (−1)j+1 det(B)

= (−1)j+1
n∑
i=1

(−1)i+1bi1 det(B(i,1))

=

n∑
i=1

(−1)i+jaij det(A(i,j)) ,

as desired. 2

(3.17). Theorem. (Row expansion) Let A = (aij)ij be an n× n matrix with
entries from the field F. Then for every row index i

det(A) =

n∑
j=1

(−1)i+jaij det(A(i,j)) .

Proof. This is an immediate consequence of the previous theorem, using
the transpose and Theorem (3.14). 2

3.6 Minors

This material was not covered in the course.
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4 Chapter 4: Introduction to spectral theory

Chapter 2 and Gaussian elimination were motivated by the solving of linear
equations. We wish for representatives and canonical forms for row equivalence—
especially, we want representatives containing lots of zeros.

At the end of that chapter we introduced matrix similarity as the equiva-
lence relation associated with choosing different bases for representation of a
fixed linear transformation. A large part of this chapter is devoted to finding
representatives and canonical forms for similarity; again we prize representatives
that contain many zeros.

A square matrix is triangulable or triangularizable if it is similar to a tri-
angular matrix. In the special case when it is similar to a diagonal matrix it
may also be called diagonable or diagonalizable (this is the most frequent ter-
minology and is preferred by Treil). Although these are critical concepts in
this chapter, we avoid the specific terminology.

Parts of this chapter can be made valid for infinite dimensional spaces (when
stated appropriately), but we shall only consider finite dimensional spaces.

4.1 Main definitions

4.1.1 Eigenvalue, eigenvectors, and spectrum

If T is a linear transformation of V (that is, from V to V ), then the nonzero
vector v is an eigenvector associated with the eigenvalue λ ∈ F when

T (v) = λv .

The spectrum of T is then the set σ(T ) of all its eigenvalues.
Of particular interest are the eigenvalues and eigenvectors of the n×n matrix

A from F, viewed as the matrix linear transformation [A] : Fn −→ Fn given by
v 7→ Av. It spectrum is σ(A) = σ([A]).

The motivation here is that the standard basis of Fn is a basis of eigen-
vectors for a diagonal matrix from Matn,n(F), its diagonal elements being the
corresponding eigenvalues.

(4.1). Theorem. Let T be a linear transformation of the F-space V of di-
mension n, and let λ ∈ F. The following are equivalent:

(1) λ is an eigenvalue of T ;

(2) Ker(T − λI) is nonzero;

(3) there is a basis B of V with [T ]BB =

(
λ a
0 B

)
, where 0 is the zero vector

of Fn−1, a is some vector of Fn−1 = Mat1,n−1(F), and B is some matrix of
Matn−1,n−1(F).
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Proof. For v 6= 0 and λ ∈ F

v ∈ Ker(T − λI) ⇐⇒ 0 = (T − λI)(v) = T (v)− λv ⇐⇒ T (v) = λv .

Therefore (1) and (2) are equivalent.
Always [T ]BB[v]B = [T (v)]B for the basis B = [[b1, . . . ]]. In particular

[T ]BB =

(
λ a
0 B

)
if and only if (1, 0, . . . , 0)> = [b1]B is an eigenvector of [T ]BB

for the eigenvector λ, which is in turn true if and only if b1 is an eigenvector of
T for the eigenvector λ. Thus (1) holds if and only if (3) holds. 2

4.1.2 Eigenvalues and the characteristic polynomial

See Section 4.1.4 below.

4.1.3 Characteristic polynomial of an operator

See Section 4.1.4 below.

4.1.4 Multiplicities and the characteristic polynomial

Theorem (4.1) makes it clear that the set of all eigenvectors associated with a
fixed eigenvalue λ is a subspace of V (indeed, the kernel of T − λI). This is the
eigenspace of λ. Here and elsewhere we abuse our terminology somewhat: by
definition all eigenvectors are nonzero; nevertheless the zero vector 0 belongs to
the eigenspace for each eigenvalue λ. (Think of 0 as a weak eigenvector.) For
eigenvalue λ, the dimension of its eigenspace is its geometric multiplicity.

(4.2). Proposition. Let T be a linear transformation of the F-space V
of dimension n, and let λ ∈ F. For the positive integer h, the following are
equivalent:

(1) λ is an eigenvalue of T of geometric multiplicity at least h;

(2) there is a basis B of V with

[T ]BB =

(
λIh C
0 D

)
.

Proof. As in Theorem (4.1), the basis B = [[b1, . . . ,bh,bh+1, . . . ]] includes
b1, . . . ,bh spanning a subspace consisting of (weak) eigenvectors of T for λ if
and only if [T ]BB has the given form. 2

By Corollary (3.3) and Theorem (4.1) we know that λ is an eigenvalue of the
matrix A if and only if it is a zero of the function det(A− zI). This function is
very important.

(4.3). Lemma. If A is an n×n matrix from F, then det(A−zI) is a polynomial
function of degree n in the variable z.
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Proof. This follows from permutation sum expansion of the determinant,
Theorem (3.15) (or from row or column expansion and induction). 2

We call det(A− zI) the characteristic polynomial of a matrix A and denote
it by cpA(z).

(4.4). Lemma. Similar matrices have the same characteristic polynomial.

Proof. This follows from Theorem (3.13). 2

In particular we can define the characteristic polynomial cpT (z) of the linear
transformation (operator) T as the characteristic polynomial of any matrix A
that represents it. Since every square matrix represents some linear transforma-
tion, we usually restrict our discussion to characteristic polynomials of square
matrices, always remembering that each result could be easily restated in terms
of linear transformations.

We have an extension of Theorem (4.1):

(4.5). Theorem. Let A be an n × n matrix from F, and let λ ∈ F. The
following are equivalent:

(1) λ is an eigenvalue of A;

(2) NS(A− λI) is nonzero;

(3) A is similar to a matrix

(
λ a
0 B

)
for 0 ∈ Fn−1, a ∈ Mat1,n−1(F), B ∈

Matn−1,n−1(F);

(4) det(A− λI) = 0;

(5) λ is a root of the characteristic polynomial cpA(z) = det(A− zI);

(6) cpA(z) = (λ− z)q(z) for a polynomial function q(z) of degree n− 1.

Proof. The first three are equivalent by Theorem (4.1).
(4) is equivalent to (2) by Proposition (3.12) and to (5) by the definition of

the characteristic polynomial. Finally (5) and (6) are true by basic properties
of polynomials. 2

By Proposition (4.2) and Lemma (4.4)

cpA(z) = (λ− z)gp(z)

where g is the geometric multiplicity of λ as an eigenvalue of A and p(z) is some
polynomial of degree n− g. The algebraic multiplicity of the eigenvalue λ of A
is the largest integer a with

cpA(z) = (λ− z)ao(z)

for some polynomial o(z) of degree n− a. Clearly then
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(4.6). Proposition. (Treil’s Proposition 4.1.1.) If λ is an eigenvalue of A
with geometric multiplicity g and algebraic multiplicity a then 1 ≤ g ≤ a. 2

(4.7). Proposition. Let A be an n × n matrix from F, and let λ ∈ F. For
the positive integer b, the following are equivalent:

(1) λ is an eigenvalue of A of algebraic multiplicity at least b;

(2) A is similar to a matrix
λ ∗ ∗
0

. . . ∗ Cb,n−b

0 0 λ
0n−b,b Dn−b,n−b

 .

Proof. That (2) implies (1) is clear.

Assuming (1), we have similarity to a matrix

(
λ a

0n−1,1 B

)
by Theorem

(4.1). Here λ is an eigenvalue of B of algebraic multiplicity at least b − 1, and
we are done by induction. 2

(4.8). Lemma. If v is an eigenvector of A associated with the eigenvalue λ
and p(x) is a polynomial, then v is also an eigenvector of p(A), now associated
with the eigenvalue p(λ). The geometric and algebraic multiplicities of p(λ) as
an eigenvalue of p(A) are at least equal to those of λ as an eigenvalue of A.

Proof. This is a direct consequence of Lemma (4.4) and Propositions (4.2)
and (4.7). 2

4.1.5 Trace and determinant

See Corollary (4.11) below.

4.1.6 Similarity and triangular matrices

(4.9). Theorem. The n × n matrix A with entries from F is similar to a
triangular matrix with diagonal entries λ1, . . . , λn if and only if

cpA(z) =

n∏
i=1

(λi − z) .

Proof. Use Proposition (4.7) and induction. 2

By the Fundamental Theorem of Algebra, we get immediately:

(4.10). Corollary. Every complex n × n matrix is similar to a triangular
matrix. 2

(4.11). Corollary. (Treil’s Theorem 4.1.2.) Let A be an n × n matrix
with eigenvalues λ1, . . . , λn (including algebraic multiplicities). Then
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(a) detA =
∏n
i=1 λi;

(b) trA =
∑n
i=1 λi.

Proof. By Lemma (4.4) and Theorem (4.9) we need only consider triangu-
lar matrices, for which the result is clearly true. 2

4.2 Similarity and diagonal matrices

(4.12). Lemma. (Treil’s Theorem 4.2.2.) If

λ1, . . . , λr

are distinct eigenvalues of T with associated eigenvectors

v1, . . . ,vr

then the system [[v1, . . . ,vr]] is linearly independent.

Proof. Pages 106–7 of Treil presents a nice induction proof of this. 2

(4.13). Theorem. (See Treil’s Theorems 4.2.1 and 4.2.8.) Let A be an
n × n matrix over F that is similar to a triangular matrix. Then the following
are equivalent:

(1) A is similar to a diagonal matrix;

(2) Fn possesses a basis of eigenvectors for A;

(3) the geometric multiplicity of each eigenvalue of A is equal to its algebraic
multiplicity.

Proof. For the diagonal matrix D with λ1, . . . , λn down the diagonal

Q−1AQ = D ⇐⇒ AQ = QD ,

and we see that column j of Q is an eigenvector of A for the eigenvalue λj .
Therefore (1) implies (2).

Conversely, if B is a basis of eigenvectors for A and Q is the matrix whose
columns are the members of Q then A = [A]EE and Q = [I]EB gives

Q−1AQ = [I]BE [A]EE [I]EB = [A]BB = D ,

a diagonal matrix. Thus (2) implies (1).
Clearly (1) and (2) imply (3).
We conclude by proving that (3) implies (2). Assume cpA(z) =

∏t
i=1(λi −

z)ai , where ai is the algebraic and geometric multiplicity of the eigenvalue λi.
For each i let vi,1, . . . ,vi,ai be a basis of the eigenspace Vi for λi. We claim that
the system

B = [[v1,1, . . . ,v1,a1 , . . . ,vi,1, . . . ,vi,ai , . . . ,vt,1, . . . ,vt,at ]]
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is a basis of eigenvectors for A on Fn. It certainly consists of eigenvectors, and
its size is

∑t
i=1 ai = n; so we only need to prove that it is linearly independent.

Suppose
t∑
i=1

ai∑
j=1

αi,jvi,j = 0 .

That is,
∑t
i=1 vi = 0 for vi =

∑ai
j=1 αi,jvi,j ∈ Vi. The various vi are (weak)

eigenvectors for the distinct eigenvalues λi, so by Lemma (4.12) each is 0. But
then as the corresponding [[vi,1, . . . ,vi,ai ]] is a basis of Vi, we find that every
αi,j is 0. B is indeed a basis. 2

(4.14). Corollary. (Treil’s Theorem 4.2.3.) If the n × n matrix A has n
distinct eigenvalues, then it is similar to a diagonal matrix.

Proof. This follows from the theorem and Lemma (4.12). 2
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