
Math 317H, Spring 2016 – HW 8 Problem 3.5.3

We find that

det
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for an = 1.

Proof (sketch): Proof is by induction on n.
Initialization: for n = 1

det(t + a0) = t + a0 ,

as claimed.
[Although it is not strictly necessary, it probably is a help to do the

n = 2 case as well:(
t a0
−1 t + a1

)
= t(t + a1) − (−1)a0 = t2 + a1t + a0 .

Doing this ahead of time also suggests the likely general answer.]

Induction step: Assume that the result is true for n− 1. We then need
to prove the result for n.

We expand the determinant along the first row.
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which, by induction, is

t
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j=0

aj+1t
j

+ (−1)1+na0(−1)n−1 =

n∑
i=0

ait
i ,

as desired.


