We find that

$$
\operatorname{det}\left(\begin{array}{cccccc}
t & 0 & \ldots & 0 & 0 & a_{0} \\
-1 & t & \ldots & 0 & 0 & a_{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & -1 & t & a_{n-2} \\
0 & 0 & \ldots & 0 & -1 & t+a_{n-1}
\end{array}\right)=\sum_{i=0}^{n} a_{i} t^{i},
$$

for $a_{n}=1$.
Proof (sketch): Proof is by induction on n.
Initialization: for $n=1$

$$
\operatorname{det}\left(t+a_{0}\right)=t+a_{0}
$$

as claimed.
[Although it is not strictly necessary, it probably is a help to do the $n=2$ case as well:

$$
\left(\begin{array}{cc}
t & a_{0} \\
-1 & t+a_{1}
\end{array}\right)=t\left(t+a_{1}\right)-(-1) a_{0}=t^{2}+a_{1} t+a_{0}
$$

Doing this ahead of time also suggests the likely general answer.]
Induction step: Assume that the result is true for $n-1$. We then need to prove the result for n.

We expand the determinant along the first row.

$$
\begin{gathered}
\\
\\
\\
\operatorname{det}\left(\begin{array}{ccccccc}
t & 0 & 0 & \ldots & 0 & 0 & a_{0} \\
-1 & t & 0 & \ldots & 0 & 0 & a_{1} \\
0 & -1 & t & \ldots & 0 & 0 & a_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & t & 0 & a_{n-3} \\
0 & 0 & 0 & \ldots & -1 & t & a_{n-2} \\
0 & 0 & 0 & \ldots & 0 & -1 & t+a_{n-1}
\end{array}\right)= \\
t \operatorname{det}\left(\begin{array}{ccccc}
t & 0 & \ldots & 0 & a_{1} \\
-1 & t & \ldots & 0 & a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & t & a_{n-2} \\
0 & 0 & \ldots & -1 & t+a_{n-1}
\end{array}\right)+(-1)^{1+n} a_{0} \operatorname{det}\left(\begin{array}{ccccc}
-1 & t & \ldots & 0 & 0 \\
0 & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & -1 & t \\
0 & 0 & \ldots & 0 & -1
\end{array}\right)
\end{gathered}
$$

which, by induction, is

$$
t\left(\sum_{j=0}^{n-1} a_{j+1} t^{j}\right)+(-1)^{1+n} a_{0}(-1)^{n-1}=\sum_{i=0}^{n} a_{i} t^{i}
$$

as desired.

