All answers must be justified appropriately.

From Treil do the following exercises.
(Note that when we refer to Exercise a.b.c, we mean Exercise b.c from Chapter a.)
pages 72-73: 2.8.1, 2.8.2, 2.8.3, 2.8.5, 2.8.6
page 85: 3.3.1, 3.3.2,
As before, on True/False problem 2.8.1 "appropriate" justification is brief, say one or two sentences.

1. Let T be the linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} defined (in the standard coordinates \mathcal{E}_{2}) by

$$
T\binom{x}{y}=\binom{3 x+y}{x-2 y}
$$

and let

$$
\mathcal{A}=\llbracket\binom{1}{1},\binom{1}{2} \rrbracket \quad \text { and } \quad \mathcal{B}=\llbracket\binom{-1}{2},\binom{0}{-1} \rrbracket
$$

be two bases for \mathbb{R}^{2}.
(a) Find the matrix $[T]_{\mathcal{A}, \mathcal{A}}$ of T with respect to the basis \mathcal{A} in both the domain and target space of T.
(b) Find the matrix $[T]_{\mathcal{B}, \mathcal{A}}$ of T with respect to the basis \mathcal{A} in domain space and \mathcal{B} in target space of T.
2. Let T, \mathcal{A}, and \mathcal{B} be defined as in Problem 1 above. Find the matrix representing the change of coordinates from basis \mathcal{A} to basis \mathcal{B} in \mathbb{R}^{2}. Then show how to use this matrix to find your answer in 1 (a) above from your answer in $1(\mathrm{~b})$ above. (Verify that your answer in $1(\mathrm{a})$ is obtained in the process.)
3. Let $T: M_{2 \times 2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T(A)=\left(\begin{array}{c}
0 \\
\operatorname{trace}(A) \\
0
\end{array}\right)
$$

Find the matrix $[T]_{\mathcal{E}, \mathcal{M}}$ of T with respect to the basis

$$
\mathcal{M}=\llbracket E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2} \rrbracket=\llbracket\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \rrbracket
$$

for $M_{2 \times 2}$ and the standard basis $\mathcal{E}=\llbracket \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3} \rrbracket$ for \mathbb{R}^{3}.

