All answers must be justified appropriately.

From Treil do the following exercises.
(Note that when we refer to Exercise a.b.c, we mean Exercise b.c from Chapter a.)
page 66-67: 2.7.1, 2.7.2, 2.7.8
page 67: 2.7.3 (you need not find a basis for $\operatorname{ker}\left(A^{\top}\right)$)
page 68: 2.7.11 (also find a basis for the null space of the matrix), 2.7.12
page 67: 2.7.13, 2.7.14
As before, on True/False problem 2.7.1 "appropriate" justification is brief, say one or two sentences.

1. Let A be an $m \times n$ matrix with entries from the field \mathbb{F}. Prove that the linear transformation

$$
T: \mathbb{F}^{n} \longrightarrow \mathbb{F}^{m} \text { given by } T(\mathbf{v})=A \mathbf{v}
$$

is surjective if and only if the linear transformation

$$
S: \mathbb{F}^{m} \longrightarrow \mathbb{F}^{n} \text { given by } S(\mathbf{w})=A^{\top} \mathbf{w}
$$

is injective. Hint: Count pivots.
2. Consider the two linear transformations of finite dimensional \mathbb{F}-spaces

$$
A: X \longrightarrow Y \quad \text { and } \quad B: W \longrightarrow X
$$

and the composition linear transformation $A B: W \longrightarrow Y$. Prove that

$$
\operatorname{rank}(A B) \leq \min (\operatorname{rank} A, \operatorname{rank} B)
$$

