All answers must be justified appropriately.

From Treil do the following exercises.
(Note that when we refer to Exercise a.b.c, we mean Exercise b.c from Chapter a.)
page 46: 2.2.1(a),(b),(c),(d): Make sure you solve the systems!
page 46: 2.2.2
page 51: 2.3.1, 2.3.3, 2.3.6
page 55: 2.5.1 (a)-(g) (Here "appropriate justification" is brief, just one or two sentences.)

1. Find the inverse C^{-1} of the matrix

$$
C=\left(\begin{array}{rrr}
1 & -1 & -2 \\
1 & 1 & -2 \\
1 & 1 & 4
\end{array}\right) \in \operatorname{Mat}_{3 \times 3}(\mathbb{Q})
$$

and write C^{-1} as a product of elementary matrices

$$
E=E_{N} E_{N-1} \cdots E_{2} E_{1}
$$

(Make sure you show the matrices E and $E_{i}, i=1, \ldots, N$.)
2. Using elementary row operations, write the matrix A given by

$$
A=\left(\begin{array}{rrrrr}
1 & -2 & 0 & 2 & -3 \\
2 & -4 & 2 & 0 & 8 \\
1 & -2 & 3 & -3 & 16
\end{array}\right) \in \operatorname{Mat}_{3 \times 5}(\mathbb{Q})
$$

as $E A$ where $E A$ is in reduced row echelon form (RREF) and E is a product of elementary matrices,

$$
E=E_{N} E_{N-1} \cdots E_{2} E_{1}
$$

(Make sure you show the matrices E and $E_{i}, i=1, \ldots, N$.)
3. Let W be a subspace of the finite dimensional vector space V over \mathbb{F}.
(i) Prove that $\operatorname{dim}_{\mathbb{F}}(W) \leq \operatorname{dim}_{\mathbb{F}}(V)$.
(ii) Prove that $\operatorname{dim}_{\mathbb{F}}(W)=\operatorname{dim}_{\mathbb{F}}(V)$ if and only if $W=V$.

Hint: We have a result (Corollary 1.7(c) of the Supplement and Proposition 2.5.4 of Treil) that says, "In a finite dimensional vector space, every linearly independent system is contained in a basis."

