All answers must be justified appropriately.

From Treil do the following exercises.
(Note that when we refer to Exercise a.b.c, we mean Exercise b.c from Chapter a.)
Treil page 17: Exercises 1.3.2, 1.3.3
Treil page 23: Exercises 1.5.1, 1.5.3, 1.5.5, 1.5.6

1. Prove that \mathbb{P}_{2}, the vector space of all real polynomials of degree at most 2 , is isomorphic to \mathbb{R}^{3}, the vector space of all real column vectors of length 3 .
2. For \mathbb{F}-linear transformations

$$
T_{1}: V \longrightarrow W \quad \text { and } \quad T_{2}: U \longrightarrow V
$$

the composition map $S=T_{1} T_{2}: U \longrightarrow W$ is given by

$$
S(\mathbf{x})=T_{1}\left(T_{2}(\mathbf{x})\right)
$$

Prove that if T_{1} and T_{2} are isomorphisms, then S is a isomorphism.
3. (a) Is the map $T: \mathbb{F}^{3} \rightarrow \mathbb{F}^{2}$, defined by

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x^{2}+2 y}{z}
$$

a linear transformation? Justify.
(b) Is the map $T: \mathbb{F}^{3} \rightarrow \mathbb{F}^{2}$, defined by

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x+2 y}{z}
$$

a linear transformation? Justify.
(c) Is the map $T: \mathbb{F}^{3} \rightarrow \mathbb{F}$ defined by

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=(x+4)
$$

a linear transformation? Justify.
(d) Let the vector space

$$
V=\{\text { functions } f(x): \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable }\}
$$

with vector addition and scalar multiplication defined pointwise as before.
Is the map $T: V \rightarrow V$ given by

$$
T(f(x))=x \cdot f(x)
$$

a linear transformation? Justify.
4. True or False (justify your answers with proofs/counterexamples):
(a) If $T: V \rightarrow W$ is a linear transformation, and $\mathbf{v}_{1}, \ldots \mathbf{v}_{n}$ are linearly independent in V, then $T\left(\mathbf{v}_{1}\right), \ldots T\left(\mathbf{v}_{n}\right)$ are linearly independent in W.
(b) If $S, T: V \rightarrow W$ are both linear transformations that agree on a basis $\left\{\mathbf{v}_{1}, \ldots \mathbf{v}_{n}\right\}$ for V, then $S=T$.
(c) Given $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{2}$ and $\mathbf{w}_{1}, \mathbf{w}_{2} \in \mathbb{R}^{2}$ such that $\mathbf{v}_{1} \neq \mathbf{v}_{2}$, there exists a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $T\left(\mathbf{v}_{1}\right)=\mathbf{w}_{1}$ and $T\left(\mathbf{v}_{2}\right)=\mathbf{w}_{2}$

