All answers must be justified appropriately.
9. Suppose $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ is a basis for a vector space V. Let $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ be any set of vectors in V. Prove that $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ is not a basis for V.

Answer:
We will show that $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ is linearly dependent. As $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ is a basis, we can write:

$$
\begin{aligned}
& \mathbf{w}_{\mathbf{1}}=a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}} \\
& \mathbf{w}_{\mathbf{2}}=b_{1} \mathbf{v}_{\mathbf{1}}+b_{2} \mathbf{v}_{\mathbf{2}} \\
& \mathbf{w}_{\mathbf{3}}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}
\end{aligned}
$$

for $a_{i}, b_{i}, c_{i} \in \mathbb{F}$.
If $a_{1}=b_{1}=c_{1}=\mathbf{0}$, then each of $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ is a scalar multiple of $\mathbf{v}_{\mathbf{2}}$, and $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ is linearly dependent. So we may assume (possibly after reindexing $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$) that $a_{1} \neq 0$.

Then

$$
\begin{aligned}
& \mathbf{w}_{\mathbf{2}}-\frac{b_{1}}{a_{1}} \mathbf{w}_{\mathbf{1}}=\left(b_{2}-\frac{b_{1}}{a_{1}} a_{2}\right) \mathbf{v}_{\mathbf{2}} \\
& \mathbf{w}_{\mathbf{3}}-\frac{c_{1}}{a_{1}} \mathbf{w}_{\mathbf{1}}=\left(c_{2}-\frac{c_{1}}{a_{1}} a_{2}\right) \mathbf{v}_{\mathbf{2}}
\end{aligned}
$$

If $b=b_{2}-\frac{b_{1}}{a_{1}} a_{2}$ is 0 , then $\mathbf{w}_{\mathbf{1}}$ and $\mathbf{w}_{\mathbf{2}}$ are linearly dependent.
If $c=c_{2}-\frac{c_{1}}{a_{1}} a_{2}$ is 0 , then $\mathbf{w}_{\mathbf{1}}$ and $\mathbf{w}_{\mathbf{3}}$ are linearly dependent.
Therefore we may assume that $b \neq 0 \neq c$. But then the equation

$$
\mathbf{v}_{\mathbf{2}}=\alpha_{1} \mathbf{w}_{\mathbf{1}}+\alpha_{2} \mathbf{w}_{\mathbf{2}}+\alpha_{3} \mathbf{w}_{\mathbf{3}}
$$

has at least two distinct solutions:

$$
\begin{aligned}
& \left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(-\frac{b_{1}}{a_{1}} b^{-1}, b^{-1}, 0\right) \\
& \left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(-\frac{c_{1}}{a_{1}} c^{-1}, 0, c^{-1}\right)
\end{aligned}
$$

and $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ is linearly dependent.
Therefore in all cases $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ is linearly dependent. In particular $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ is not a basis.

