All answers must be justified appropriately.

From Treil do problems:
page 115: 4.2.9
page 254: 9.1.1
(1) Of course the identity matrix $I \in \operatorname{Mat}_{n}(\mathbb{F})$ has the basis of eigenvectors \mathcal{E}_{n}, the standard basis of column vectors, each with eigenvalue 1 . We introduced the elementary matrices as being "close to the identity." That is reflected in the fact that most elements of the basis \mathcal{E} remain eigenvectors for each elementary matrix, again with eigenvalue 1 .
(a) For $S_{i}(r)$, with $r \neq 1$, find $n-1$ elements of \mathcal{E} that are eigenvectors for the eigenvalue 1. Find the remaining eigenvalue and associated eigenvector.
(b) For $X_{i, j}$ find $n-2$ elements of \mathcal{E} that are eigenvectors for the eigenvalue 1. Find the remaining two eigenvalues and associated eigenvectors.
(c) For $R_{i, j}(a)$, with $a \neq 0$, find $n-1$ elements of \mathcal{E} that are eigenvectors for the eigenvalue 1. Prove that this matrix cannot be diagonalized.
(2) Recall that a square matrix $A \in \operatorname{Mat}_{n}(\mathbb{F})$ is nilpotent if $A^{k}=0$ for some positive integer k. Prove that a nonzero nilpotent matrix cannot be diagonalized.
(3) Let J denote the $n \times n$ matrix with every entry equal to 1 . Prove that the vector $\mathbf{1}=(1,1,1, \ldots, 1)^{\top}$ is an eigenvector for the eigenvalue n and that any vector $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ with $\sum_{i=1}^{n} v_{i}=0$ is an eigenvector for the eigenvalue 0 .
(4) Consider the $n \times n$ matrix

$$
M=\left(\begin{array}{ccccc}
r & l & l & \ldots & l \\
l & r & l & \ldots & l \\
l & l & r & \ldots & l \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
l & l & l & \ldots & r
\end{array}\right) .
$$

Find the determinant of M. (You may assume $n \neq 0$ in \mathbb{F}.)
Hint: You can put M into echelon form.
Hint: Alternatively: Write M as $(r-l) I+l J$. Then explain why a basis of eigenvectors for J (from the previous problem) is a basis of eigenvectors for M. Find the corresponding eigenvalues. The product of these eigenvalues (including multiplicities) is then the desired determinant.

