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Comments and course information

These are lecture notes for Functional Analysis (Math 920), Spring 2008. The text for
this course is Functional Analysis by Peter D. Lax, John Wiley & Sons (2002), referred to
as “Lax” below. In some places I follow the book closely in others additional material and
alternative proofs are given.

Other excellent texts include

• M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. I: Functional
Analysis, Academic Press (1980).
• W. Rudin, Functional Analysis, McGraw-Hill, 2nd ed. (1991).

(As needed, these will be referred to below as “Reed and Simon” and “Rudin” respectively.)
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Part 1

Hahn-Banach Theorem and Applications





LECTURE 1

Linear spaces and the Hahn Banach Theorem

Reading: Chapter 1 and §3.1 of Lax
Many objects in mathematics — particularly in analysis — are, or may be described in

terms of, linear spaces (also called vector spaces). For example:

(1) C(M) = space of continuous functions (R or C valued) on a manifold M .
(2) A(U) = space of analytic functions in a domain U ⊂ C.
(3) Lp(µ) = {p integrable functions on a measure space M, µ}.

The key features here are the axioms of linear algebra,

Definition 1.1. A linear space X over a field F (in this course F = R or C) is a set on
which we have defined

(1) addition: x, y ∈ X 7→ x+ y ∈ X
and

(2) scalar multiplication: k ∈ F, x ∈ X 7→ kx ∈ X
with the following properties

(1) (X,+) is an abelian group (+ is commutative and associative and ∃ identity and
inverses.)
• identity is called 0 (“zero”)
• inverse of x is denoted −x

(2) scalar multiplication is
• associative: a(bx) = (ab)x,
• distributive: a(x+ y) = ax+ by and (a+ b)x = ax+ bx,

and satisfies 1x = x.

Remark. It follows from the axioms that 0x = 0 and −x = (−1)x.

Recall from linear algebra that a set of vectors S ⊂ X is linearly independent if

n∑
j=1

ajxj = 0 with x1, . . . , xn ∈ S =⇒ a1 = · · · = an = 0

and that the dimension of X is the cardinality of a maximal linearly independent set in X.
The dimension is also the cardinality of a minimal spanning set, where the span of a set S
is the set

spanS =

{
n∑
j=1

ajxj : a1, . . . , an ∈ R and x1, . . . , xn ∈ S

}
,

and S is spanning, or spans X, if spanS = X.
More or less, functional analysis is linear algebra done on spaces with infinite dimension.

Stated this way it may seem odd that functional analysis is part of analysis. For finite
dimensional spaces the axioms of linear algebra are very rigid: there is essentially only
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1-2 1. LINEAR SPACES AND THE HAHN BANACH THEOREM

one interesting topology on a finite dimensional space and up to isomorphism there is only
one linear space of each finite dimension. In infinite dimensions we shall see that topology
matters a great deal, and the topologies of interest are related to the sort of analysis that
one is trying to do.

That explains the second word in the name ”functional analysis.” Regarding “functional,”
this is an archaic term for a function defined on a domain of functions. Since most of
the spaces we study are function spaces, like C(M), the functions defined on them are
“functionals.” Thus “functional analysis.” In particular, we define a linear functional to be
a linear map ` : X → F , which means

`(x+ y) = `(x) + `(y) and `(ax) = a`(x) for all x, y ∈ X and a ∈ F.
Often, one is able to define a linear functional at first only for a limited set of vectors

Y ⊂ X. For example, one may define the Riemann integral on Y = C[0, 1], say, which
is a subset of the space B[0, 1] of all bounded functions on [0, 1]. In most cases, as in the
example, the set Y is a subspace:

Definition 1.2. A subset Y ⊂ X of a linear space is a linear subspace if it is closed
under addition and scalar multiplication: y1, y2 ∈ Y and a ∈ F =⇒ y1 + ay2 ∈ Y .

For functionals defined, at first, on a subspace of a linear space of R we have

Theorem 1.1 (Hahn (1927), Banach (1929)). Let X be a linear space over R and p a
real valued function on X with the properties

(1) p(ax) = ap(x) for all x ∈ X and a > 0 (Positive homogeneity)
(2) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X (subadditivity).

If ` is a linear functional defined on a linear subspace of Y and dominated by p, that is
`(y) ≤ p(y) for all y ∈ Y , then ` can be extended to all of X as a linear functional dominated
by p, so `(x) ≤ p(x) for all x ∈ X.

Example. Let X = B[0, 1] and Y = C[0, 1]. On Y , let `(f) =
∫ 1

0
f(t)dt (Riemann

integral). Let p : B → R be p(f) = sup{|f(x)| : x ∈ [0, 1]}. Then p satisfies (1) and (2)
and `(f) ≤ p(f). Thus we can extend ` to all of B[0, 1]. We will return to this example and
see that we can extend ` so that `(f) ≥ 0 whenever f ≥ 0. This defines a finitely additive
set function on all(!) subset of [0, 1] via µ(S) = `(χS). For Borel measurable sets it turns
out the result is Lebesgue measure. That does not follow from Hahn-Banach however.

The proof of Hahn-Banach is not constructive, but relies on the following result equivalent
to the axiom of choice:

Theorem 1.2 (Zorn’s Lemma). Let S be a partially ordered set such that every totally
ordered subset has an upper bound. Then S has a maximal element.

To understand the statement, we need

Definition 1.3. A partially ordered set S is a set on which an order relation a ≤ b is
defined for some (but not necessarily all) pairs a, b ∈ S with the following properties

(1) transitivity: if a ≤ b and b ≤ c then a ≤ c
(2) reflexivity: if a ≤ a for all a ∈ S.

(Note that (1) asserts two things: that a and c are comparable and that a ≤ c.) A subset T
of S is totally ordered if x, y ∈ T =⇒ x ≤ y or y ≤ x. An element u ∈ S is an upper bound
for T ⊂ S if x ∈ T =⇒ x ≤ u. A maximal element m ∈ S satisfies m ≤ b =⇒ m = b.
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Proof of Hahn-Banach. To apply Zorn’s Lemma, we need a poset,

S = {extensions of ` dominated by p} .
That is S consists of pairs (`′, Y ′) with `′ a linear functional defined on a subspace Y ′ ⊃ Y
so that

`′(y) = `(y), y ∈ Y and `′(y) ≤ p(y), y ∈ Y ′.
Order S as follows

(`1, Y1) ≤ (`2, Y2) ⇐⇒ Y1 ⊂ Y2 and `2|Y1 = `1.

If T is a totally ordered subset of S, let (`, Y ) be

Y =
⋃
{Y ′ : (`′, Y ′) ∈ T}

and
`(y) = `′(y) for y ∈ Y ′.

Since T is totally ordered the definition of ` is unambiguous. Clearly (`, Y ) is an upper
bound for T . Thus by Zorn’s Lemma there exists a maximal element (`+, Y +).

To finish, we need to see that Y + = X. It suffices to show that (`′, Y ′) has an extension
whenever Y ′ 6= X. Indeed, let x0 ∈ X. We want `′′ on Y ′′ = {ax0 + y : y ∈ Y, a ∈ R}. By
linearity we need only define `′′(x0). The constraint is that we need

a`′′(x0) + `′(y) ≤ p(ax0 + y)

for all a, y. Dividing through by |a|, since Y ′ is a subspace, we need only show

± `′′(x0) ≤ p(y ± x0)− `′(y) (1.1)

for all y ∈ Y ′. We can find `′′(x0) as long as

`′(y′)− p(y′ − x0) ≤ p(x0 + y)− `′(y) for all y, y′ ∈ Y ′, (1.2)

or equivalently
`′(y′ + y) ≤ p(x0 + y) + p(y′ − x0) for all y, y′ ∈ Y ′. (1.3)

Since
`′(y′ + y) ≤ p(y′ + y) = p(y′ − x0 + y + x0) ≤ p(x0 + y) + p(y′ − x0),

(1.3), and thus (1.2), holds. So we can satisfy (1.1). �

In finite dimensions, one can give a constructive proof involving only finitely many choices.
In infinite dimensions the situation is a quite a bit different, and the approach via Zorn’s
lemma typically involves uncountably many “choices.”





LECTURE 2

Geometric Hahn-Banach Theorems

Reading: §3.2, §3.3 of Lax.
We may use Hahn-Banach to understand something of the geometry of linear spaces. We

want to understand if the following picture holds in infinite dimension:

Figure 2.1. Separating a point from a convex set by a line hyperplane

Definition 2.1. A set S ⊂ X is convex if for all x, y ∈ S and t ∈ [0, 1] we have
tx+ (1− t)y ∈ S.

Definition 2.2. A point x ∈ S ⊂ X is an interior point of S if for all y ∈ X ∃ε > 0 s.t.
|t| < ε =⇒ x+ ty ∈ S.

Remark. We can a define a topology using this notion, letting U ⊂ X be open ⇐⇒
all x ∈ U are interior. From the standpoint of abstract linear algebra this seems to be
a “natural” topology on X. In practice, however, it has way too many open sets and we
work with weaker topologies that are relevant to the analysis under considerations. Much of
functional analysis centers around the interplay of different topologies.

We are aiming at the following
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2-2 2. GEOMETRIC HAHN-BANACH THEOREMS

Theorem 2.1. Let K be a non-empty convex subset of X, a linear space over R, and
suppose K has at least one interior point. If y 6∈ K then ∃ a linear functional ` : X → R s.t.

`(x) ≤ `(y) for all x ∈ K, (2.1)

with strict inequality for all interior points x of K.

This is the “hyperplane separation theorem,” essentially validates the picture drawn
above. A set of the form {`(x) = c} with ` a linear functional is a “hyperplane” and the sets
{`(x) < c} are “half spaces.”

To accomplish the proof we will use Hahn-Banach. We need a dominating function p.

Definition 2.3. Let K ⊂ X be convex and suppose 0 is an interior point. The gauge
of K (with respect to the origin) is the function pK : X → R defined as

pK(x) = inf{a : a > 0 and
x

a
∈ K}.

(Note that pK(x) <∞ for all x since 0 is interior.)

Lemma 2.2. pK is positive homogeneous and sub-additive.

Proof. Positive homogeneity is clear (even if K is not convex). To prove sub-additivity
we use convexity. Consider pK(x+ y). Let a, b be such that x/a, y/b ∈ K. Then

t
x

a
+ (1− t)y

b
∈ K ∀t ∈ [0, 1],

so
x+ y

a+ b
=

a

a+ b

x

a
+

b

a+ b

y

b
∈ K.

Thus pK(x+ y) ≤ a+ b, and optimizing over a, b we obtain the result. �

Proof of hyperplane separation thm. Suffices to assume 0 ∈ K is interior and
c = 1. Let pK be the gauge of K. Note that pK(x) ≤ 1 for x ∈ K and that pK(x) < 1 if x is
interior, as then (1 + t)x ∈ K for small t > 0. Conversely if pK(x) < 1 then x is an interior
point (why?), so

pK(x) < 1 ⇐⇒ x ∈ K.
Now define `(y) = 1, so `(ay) = a for a ∈ R. Since y 6∈ K it is not an interior point and

so pK(y) ≥ 1. Thus pK(ay) ≥ a for a ≥ 0 and also, trivially, for a < 0 (since pK ≥ 0). Thus

pK(ay) ≥ `(ay)

for all a ∈ R. By Hahn-Banach, with Y the one dimensional space {ay}, ` may be extended
to all of x so that pK(x) ≥ `(x) which implies (2.1). �

An extension of this is the following

Theorem 2.3. Let H,M be disjoint convex subsets of X, at least one of which has an
interior point. Then H and M can be separate by a hyperplane `(x) = c: there is a linear
functional ` and c ∈ R such that

`(u) ≤ c ≤ `(v)∀u ∈ H, v ∈M.
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Proof. The proof rests on a trick of applying the hyperplane separation theorem with
the set

K = H −M = {u− v : u ∈ H and v ∈M}
and the point y = 0. Note that 0 6∈ K since H ∪M = ∅. Since K has an interior point
(why?), we see that there is a linear functional such that `(x) ≤ 0 for all x ∈ K. But then
`(u) ≤ `(v) for all u ∈ H, v ∈M . �

In many applications, one wants to consider a vector space X over C. Of course, then X
is also a vector space over R so the real Hahn-Banach theorem applies. Using this one can
show the following

Theorem 2.4 (Complex Hahn-Banach, Bohenblust and Sobczyk (1938) and Soukhom-
linoff (1938)). Let X be a linear space over C and p : X → [0,∞) such that

(1) p(ax) = |a|p(x)∀a ∈ C, x ∈ X.
(2) p(x+ y) ≤ p(x) + p(y) (sub-additivity).

Let Y be a C linear subspace of X and ` : Y → C a linear functional such that

|`(y)| ≤ p(y) (2.2)

for all y ∈ Y . Then ` can be extended to all of X so that (2.2) holds for all y ∈ X.

Remark. A function p that satisfies (1) and (2) is called a semi-norm. It is a norm if
p(x) = 0 =⇒ x = 0.

Proof. Let `1(y) = Re `(y), the real part of `. Then `1 is a real linear functional and
−`1(iy) = −Re i`(y) = Im `(y), the imaginary part of `. Thus

`(y) = `1(y)− i`1(iy). (2.3)

Clearly |`1(y)| ≤ p(y) so by the real Hahn-Banach theorem we can extend `1 to all of
X so that `1(y) ≤ p(y) for all y ∈ X. Since −`1(y) = `1(−y) ≤ p(−y) = p(y), we have
|`1(y)| ≤ p(y) for all y ∈ X. Now define the extension of ` via (2.3). Given y ∈ X let
θ = arg ln `(y). Thus `(y) = eiθ`1(e−iθy) (why?). So,

|`(y)| = |`1(e−iθy)| ≤ p(y).

�

Lax gives another beautiful extension of Hahn-Banach, due to Agnew and Morse, which
involves a family of commuting linear maps. We will cover a simplified version of this next
time.





LECTURE 3

Applications of Hahn-Banach

Reading: §4.1, §4.2 of Lax.
To get an idea what one can do with the Hahn-Banach theorem let’s consider a concrete

application on the linear space X = B(S) of all real valued bounded functions on a set S.
B(S) has a natural partial order, namely x ≤ y if x(s) ≤ y(s) for all s ∈ S. If 0 ≤ x then x
is nonnegative. On B(S) a positive linear functional ` satisfies `(y) ≥ 0 for all y ≥ 0.

Theorem 3.1. Let Y be a linear subspace of B(S) that contains y0 ≥ 1, so y0(s) ≥ 1
for all s ∈ S. If ` is a positive linear functional on Y then ` can be extended to all of B as
a positive linear functional.

This theorem can be formulated in an abstract context as follows. The nonnegative
functions form a cone, where

Definition 3.1. A subset P ⊂ X of a linear space over R is a cone if tx + sy ∈ P
whenever x, y ∈ P and t, s ≥ 0. A linear functional on X is P -nonnegative if `(x) ≥ 0 for
all x ∈ P .

Theorem 3.2. Let P ⊂ X be a cone with an interior point x0. If Y is a subspace
containing x0 on which is defined a P ∩Y -positive linear functional `, then ` has an extension
to X which is P -positive.

Proof. Define a dominating function p as follows

p(x) = inf{`(y) : y − x ∈ P, y ∈ Y }.
Note that y0 − tx ∈ P for some t > 0 (since y0 is interior to P ), so 1

t
y0 − x ∈ P . This

shows that p(x) is well defined. It is clear that p is positive homegeneous. To see that it is
sub-additive, let x1, x2 ∈ X and let y1, y2 be so that yj−xj ∈ P . Then y1+y2−(x1+x2) ∈ P ,
so

p(x1 + x2) ≤ `(y1) + `(y2).

Minimizing over y1,2 gives sub-additivity.
Since `(x) = `(x− y) + `(y) ≤ `(y) if x ∈ Y and y− x ∈ P we conclude that `(x) ≤ p(x)

for all x ∈ Y . By Hahn-Banach we may extend ` to all of X so that `(x) ≤ p(x) for all x.
Now let x ∈ P . Then p(−x) ≤ 0 (why?), so −`(x) = `(−x) ≤ 0 which shows that ` is

P -positive. �

The theorem on B(S) follows from the Theorem 3.2 once we observe that the condition
y0 ≥ 1 implies that y0 is an interior point of the cone of positive functions. The linear
functional that one constructs in this way is monotone:

x ≤ y =⇒ `(x) ≤ `(y),

which is in fact equivalent to positivity. This can allow us to do a little bit of analysis, even
though we haven’t introduced notions of topology or convergence.
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3-2 3. APPLICATIONS OF HAHN-BANACH

To see how this could work, let’s apply the result to the Riemann integral on C[0, 1].
We conclude the existence of a positive linear functional ` : B[0, 1] → R that gives `(f) =∫ 1

0
f(x)dx. This gives an “integral” of arbitrary bounded functions, without a measurability

condition. Since the integral is a linear functional, it is finitely additive. Of course it is
not countably additive since we know from real analysis that such a thing doesn’t exist.
Furthermore, the integral is not uniquely defined.

Nonetheless, the extension is also not arbitrary, and the constraint of positivity actually
pins down `(f) for many functions. For example, consider χ(a,b) (the characteristic function
of an open interval). By positivity we know that

f ≤ χ(a,b) ≤ g, f, g ∈ C[0, 1] =⇒
∫ 1

0

f(x)dx ≤ `(χ(a,b)) ≤
∫ 1

0

g(x)dx.

Taking the sup over f and inf over g, using properties only of the Riemann integral, we see
that `(χ(a,b)) = b− a (hardly a surprising result). Likewise, we can see that `(χU) = |U | for
any open set, and by finite additivity `(χF ) = 1− `(F c) = 1− |F c| = |F | for any closed set
(| · | is Lebesgue measure). Finally if S ⊂ [0, 1] and

sup {`(F ) : F closed and F ⊂ S} = inf {`(U) : U open and U ⊃ S}
then `(χS) must be equal to these two numbers. We see that `(χS) = |S| for any Lebesgue
measurable set. We have just painlessly constructed Lebesgue measure from the Riemann
integral without using any measure theory!

The rigidity of the extension is a bit surprising if we compare with what happens in
finite dimensions. For instance, consider the linear functional `(x, 0) = x defined on Y =
{(x, 0)} ⊂ R2. Let P be the cone {(x, y) : |y| ≤ αx}. So ` is P ∩ Y -positive. To extend `
to all of R2 we need to define `(0, 1). To keep the extension positive we need only require

y`(0, 1) + 1 ≥ 0

if |y| ≤ α. Thus we must have |`(0, 1)| ≤ 1/α, and any choice in this interval will work.
Only when α = ∞ and the cone degenerates to a half space does the condition pin `(0, 1)
down. So some interesting things happen in ∞ dimensions.

A second example application assigning a limiting value to sequences

a = (a1, a2, . . .).

Let B denote the space of all bounded R-valued sequences and let L denote the subspace of
sequences with a limit. We quickly conclude that there is an positive linear extension of the
positive linear functional lim to all of B. We would like to conclude a little more, however.
After all, for convergent sequences,

lim an+k = lim an

for any k.
To formalize this property we define a linear map on B by

T (a1, a2, . . .) = (a2, a3, . . .).

(T is the “backwards shift” operator or “left translation.”) Here,

Definition 3.2. Let X1, X2 be linear spaces over a field F . A linear map T : X1 → X2

is a function such that

T (x+ ay) = T (x) + aT (y) ∀x, y ∈ X1 and a ∈ F.
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Thus limTa = lim a for a ∈ L. We would like the extension to have this property. Can
this be done?

The answer is given by the following a simplified version of the Theorem of Agnew and
Morse given in Chapter 3 of Lax:

Theorem 3.3. Let X be a linear space over R and let T : X → X be a linear map. Let
p : X → R be a positive homogeneous, sub-additive function invariant under T :

p(Tx) = p(x) ∀x ∈ X.
Let ` be a linear functional defined on a subspace Y ⊂ X invariant under T ,

Ty ∈ Y ∀y ∈ Y.
If ` is invariant under T — `(Ty) = `(y) — and dominated by p then ` may be extended to
all of X so that the extension is also invariant under T and dominated by p.

Remark. Applying this to the space B of bounded sequences and letting

p(a) = lim sup a,

we find that there is an extension of the linear functional lim from L to all of B such that
for all a = (a1, a2, . . .)

(1) limn→∞ an+k = limn→∞ an for all k.
(2) lim inf a ≤ lim a ≤ lim sup a . (The first inequality follows from the second applied

to −a.)

Proof. Let us define
q(x) = inf p(Ax),

where the infimum is over all convex combinations of powers of T ,

A =
n∑
j=0

ajT
j (3.1)

where T 0 = 1, the identity operator on X, 1x = x, and aj is any finite, non-negative sequence
with

∑
j aj = 1. Clearly q(x) is positive homogeneous and q(x) ≤ p(x). Also, since ` and Y

are invariant under any A of the form (3.1) we have

`(y) ≤ q(y) ∀y ∈ Y.
To apply Hahn-Banach with q as the dominating function we need to show it is sub-

additivie. To this end, let x, y ∈ X and let A,B be of the form (3.1) so that

p(Ax) ≤ q(x) + ε and p(By) ≤ q(y) + ε.

Then A ◦B = B ◦ A is of the form (3.1) and

q(x+ y) ≤ p(AB(x+ y)) ≤ p(BAx) + p(ABy) ≤ p(Ax) + p(By) ≤ q(x) + q(y) + 2ε.

Thus q is sub-additive.
So now we know that an extension exists to all of X with `(x) ≤ q(x) for all x. However,

q(x− Tx) ≤ p

(
1

n

n∑
j=0

T j(1− T )x

)
=

1

n
p(x− T n+1x) ≤ 1

n
(p(x) + p(−x))→ 0.

So q(x− Tx) = 0 for all x and thus `(x)− `(Tx) = 0 for all x. �
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LECTURE 4

Normed and Banach Spaces

Reading: §5.1 of Lax.
The Hahn-Banach theorem made use of a dominating function p(x). When this function

is non-negative, it can be understood roughly as a kind of “distance” from a point x to the
origin. For that to work, we should have p(x) > 0 whenever x 6= 0. Such a function is called
a norm:

Definition 4.1. Let X be a linear space over F = R or C. A norm on X is a function
‖·‖ : X → [0,∞) such that

(1) ‖x‖ = 0 ⇐⇒ x = 0.
(2) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (subadditivity)
(3) ‖ax‖ = |a| ‖x‖ for all a ∈ F and x ∈ X (homogeneity).

A normed space is a linear space X with a norm ‖·‖.

The norm on a normed space gives a metric topology if we define the distance between
two points via

d(x, y) = ‖x− y‖ .
Condition 1 guarantees that two distinct points are a finite distance apart. Sub-additivity
gives the triangle inequality. The metric is

(1) translation invariant: d(x+ z, y + z) = d(x, y)
and

(2) homogeneous d(ax, ay) = |a|d(x, y).

Thus any normed space is a metric space and we have the following notions:

(1) a sequence xn converges to x, xn → x, if d(xn, x) = ‖xn − x‖ → 0.
(2) a set U ⊂ X is open if for every x ∈ U there is a ball {y : ‖y − x‖ < ε} ⊂ U .
(3) a set K ⊂ X is closed if X \K is open.
(4) a set K ⊂ X is compact if every open cover of K has a finite sub-cover.

The norm defines the topology but not the other way around. Indeed two norms ‖·‖1

and ‖·‖2 on X are equivalent if there is c > 0 such that

c ‖x‖1 ≤ ‖x‖2 ≤ c−1 ‖x‖2 ∀x ∈ X.

Equivalent norms define the same topology. (Why?)
Recall from real analysis that a metric space X is complete if every Cauchy sequence xn

converges in X. In a normed space, a Cauchy sequence xn is one such that

∀ε > 0∃N ∈ N such that n,m > N =⇒ ‖xn − xm‖ < ε.

A complete normed space is called a Banach space.
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Not every normed space is complete. For example C[0, 1] with the norm

‖f‖1 =

∫ 1

0

|f(x)|dx

fails to be complete. (It is, however, a complete space in the uniform norm, ‖f‖u =
supx∈[0,1] |f(x)|.) However, every normed space X has a completion, defined abstractly as

a set of equivalence classes of Cauchy sequences in X. This space, denoted X is a Banach
space.

Examples of Normed and Banach spaces

(1) For each p ∈ [1,∞) let

`p = {p summable sequences} = {(a1, a2, . . .) |
∞∑
j=1

|aj|p <∞}.

Define a norm on `p via

‖a‖p =

[
∞∑
j=1

|aj|p
] 1
p

.

Then `p is a Banach space.
(2) Let

`∞ = {bounded sequences} = B(N),

with norm

‖a‖∞ = sup
j
|aj|. (?)

Then `∞ is a Banach space.
(3) Let

c0 = {sequences converging to 0} = {(a1, a2, . . .) | lim
j→∞

aj = 0},

with norm (?). Then c0 is a Banach space.
(4) Let

F = {sequences with finitely many non-zero terms}
= {(a1, a2, . . .) | ∃N ∈ Nsuch that n ≥ N =⇒ an = 0}.

Then for any p ≥ 1, Fp = (F , ‖·‖p) is a normed space which is not complete. The
completion of Fp is isomorphic to `p.

(5) Let D ⊂ Rd be a domain and let p ∈ [1,∞).
(a) Let X = Cc(D) be the space of continuous functions with compact support in

D, with the norm

‖f‖p =

[∫
D

|f(x)|pdx
] 1
p

.
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Then X is a normed space, which is not complete. Its completion is denoted
Lp(D) and may be identified with the set of equivalence classes of measurable
functions f : D → C such that∫

D

|f(x)|pdx <∞ (Lebesgue measure),

with two functions f, g called equivalent if f(x) = g(x) for almost every x.
(b) Let X denote the set of C1 functions on D such that∫

D

|f(x)|pdx <∞ and

∫
D

|∂jf(x)|pdx <∞, j = 1, . . . , n.

Put the following norm on X,

‖f‖1,p =

[∫
D

|f(x)|pdx+
n∑
j=1

∫
D

|∂jf(x)|pdx.

] 1
p

.

Then X is a normed space which is not complete. Its completion is denoted
W 1,p(D) and is called a Sobolev space and may be identified with the sub-
space of Lp(D) consisting of (equivalence classes) of functions all of whose first
derivatives are in Lp(D) in the sense of distributions. (We’ll come back to this.)

Note that a ∈ `1 is summable, ∑
j

aj ≤ ‖a‖1 .

Theorem 4.1 (Hölder’s Inqequality). Let 1 < p <∞ and let q be such that

1

p
+

1

q
= 1.

If a ∈ `p and b ∈ `q then
ab = (a1b1, a2b2, . . .) ∈ `1

and ∣∣∣∣∣
∞∑
j=1

ajbj

∣∣∣∣∣ ≤ ‖a‖p ‖b‖q .
Proof. First note that for two non-negative numbers a, b it holds that

ab ≤ 1

p
ap +

1

q
bq.

For p = q = 2 this is the familiar “arithmetic-geometric mean” inequality which follows since
(a−b)2 ≥ 0. For general a, b this may be seen as follows. The function x 7→ exp(x) is convex:
exp(tx+ (1− t)y) ≤ t exp(x) + (1− t) exp(y). (Recall from calculus that a C2 function f is
convex if f ′′ ≥ 0.) Thus,

ab = exp(
1

p
ln ap +

1

q
ln bq) ≤ 1

p
exp(ln ap) +

1

q
exp(ln bq) =

1

p
ap +

1

q
bq.

Applying this bound co-ordinate wise and summing up we find that

‖ab‖1 ≤
1

p
‖a‖pp +

1

q
‖b‖qq .
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The result follows from this bound by “homogenization:” we have

‖a‖p , ‖b‖q =⇒ ‖ab‖ ≤ 1,

so ∥∥∥∥∥ a

‖a‖p
b

‖b‖q

∥∥∥∥∥
1

≤ 1

from which the desired estimate follows by homogeneity of the norm. �

Similarly, we have

Theorem 4.2 (Hölder’s Inequality). Let 1 < p <∞ and let q be the conjugate exponent.
If f ∈ Lp(D) and g ∈ Lq(D) then fg ∈ L1(D) and∫

D

|f(x)g(x)|dx ≤ ‖f‖p ‖g‖q .



LECTURE 5

Noncompactness of the Ball and Uniform Convexity

Reading: §5.1 and §5.2 of Lax.
First a few more definitions:

Definition 5.1. A normed space X over F = R or C is called separable if it has a
countable, dense subset.

Most spaces we consider are separable, with a few notable exceptions.

(1) The space M of all signed (or complex) measures µ on [0, 1], say, with norm

‖µ‖ =

∫ 1

0

|µ|(dx).

Here |µ| denotes the total variation of µ,

|µ|(A) = sup
Partitions A1, . . . , An of A

n∑
j=1

|µ(Aj)|.

This space is a Banach space. Since the point mass

δx(A) =

{
1 x ∈ A
0 x 6∈ A

is an element of A and ‖δx − δy‖ = 2 if x 6= y, we have an uncountable family of
elements of M all at a fixed distance of one another. Thus there can be no countable
dense subset. (Why?)

(2) `∞ is also not separable. To see this, note that to each subset of A ⊂ N we may
associate the sequence χA, and

‖χA − χB‖∞ = 1

if A 6= B.
(3) `p is separable for 1 ≤ p <∞.
(4) Lp(D) is separable for 1 ≤ p <∞.
(5) L∞(D) is not separable.

Noncompactness of the Unit Ball

Theorem 5.1 (F. Riesz). Let X be a normed linear space. Then the closed unit ball
B1(0) = {x : ‖X‖ ≤ 1} is compact if and only if X is finite dimensional.

Proof. The fact that the unit ball is compact if X is finite dimensional is the Heine-
Borel Theorem from Real Analysis.

To see the converse, we use the following
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Lemma 5.2. Let Y be a closed proper subspace of a normed space X. Then there is a
unit vector z ∈ X, ‖z‖ = 1, such that

‖z − y‖ > 1

2
∀y ∈ Y.

Proof of Lemma. Since Y is proper, ∃x ∈ X \ Y . Then

inf
y∈Y
‖x− y‖ = d > 0.

(This is a property of closed sets in a metric space.) We do not know the existence of a
minimizing y, but we can certainly find y0 such that

0 < ‖x− y0‖ < 2d.

Let z = x−y0
‖x−y0‖ . Then

‖z − y‖ =
‖x− y0 − ‖x− y0‖ y‖

‖x− y0‖
≥ d

2d
=

1

2
.

�

Returning to the proof of the Theorem, we will use the fact that every sequence in a
compact metric space has a convergent subsequence. Thus it suffices to show that if X is
infinite dimensional then there is a sequence in B1(0) with no convergent subsequence.

Let y1 be any unit vector and construct a sequence of unit vectors, by induction, so that

‖yk − y‖ >
1

2
∀y ∈ span{y1, . . . , yk−1}.

(Note that span{y1, . . . , yk−1} is finite dimensional, hence complete, and thus a closed sub-
space of X.) Since X is finite dimensional the process never stops. No subsequence of yj
can be Cauchy, much less convergent. �

Uniform convexity

The following theorem may be easily shown using compactness:

Theorem 5.3. Let X be a finite dimensional linear normed space. Let K be a closed
convex subset of X and z any point of X. Then there is a unique point of K closer to z than
any other point of K. That is there is a unique solution y0 ∈ K to the minimization problem

‖y0 − z‖ = inf
y∈K
‖y − z‖ . (?)

Try to prove this theorem. (The existence of a minimizer follows from compactness; the
uniqueness follows from convexity.)

The conclusion of theorem does not hold in a general infinite dimensional space. Nonethe-
less there is a property which allows for the conclusion, even though compactness fails!

Definition 5.2. A normed linear space X is uniformly convex if there is a function
ε : (0,∞)→ (0,∞), such that

(1) ε is increasing.
(2) limr→0 ε(r) = 0.
(3)

∥∥1
2
(x+ y)

∥∥ ≤ 1− ε(‖x− y‖) for all x, y ∈ B1(0), the unit ball of X.
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Theorem 5.4 (Clarkson 1936). Let X be a uniformly convex Banach space, K a closed
convex subset of X, and z any point of X. Then the minimization problem (?) has a unique
solution y0 ∈ K.

Proof. If z ∈ K then y0 = z is the solution, and is clearly unique.
When z 6∈ K, we may assume z = 0 (translating z and K if necessary). Let

s = inf
y∈K
‖y‖ .

So s > 0. Now let yn ∈ K be a minimizing sequence, so

‖yn‖ → s.

Now let xn = yn/ ‖yn‖, and consider

1

2
(xn + xm) =

1

2 ‖yn‖
yn +

1

2 ‖ym‖
ym =

(
1

2 ‖yn‖
+

1

2 ‖ym‖

)
(tyn + (1− t)ym)

for suitable t. So tyn + (1− t)ym ∈ K and

‖tyn + (1− t)ym‖ ≥ s.

Thus

1− ε(‖xn − xm‖) ≥
1

2

(
s

‖yn‖
+

s

‖ym‖

)
→ 1.

We conclude that xn is a Cauchy sequence, from which it follows that yn is Cauchy. The
limit y0 ∈ limn yn exists in K since X is complete and K is closed. Clearly ‖y0‖ = s. �

Warning: Not every Banach space is uniformly convex. For example, the space C(D) of
continuous functions on a compact set D is not uniformly convex. It may even happen that∥∥∥∥1

2
(f + g)

∥∥∥∥
∞

= 1

for unit vectors f and g. (They need only have disjoint support.) Lax gives an example of
a closed convex set in C[−1, 1] in which the minimization problem (?) has no solution.

It can also happen that a solution exists but is not unique. For example, in C[−1, 1] let
K = {functions that vanish on [−1, 0]}. and let f = 1 on [−1, 1]. Clearly

sup
x
|f(x)− g(x)| ≥ 1 ∀g ∈ K,

and the distance 1 is attained for any g ∈ K that satisfies 0 ≤ g(x) ≤ 1.





LECTURE 6

Linear Functionals on a Banach Space

Reading: §8.1 and §8.2 of Lax

Definition 6.1. A linear functional ` : X → F on a normed space X over F = R or C
is bounded if there is c <∞ such that

|`(x)| ≤ c ‖x‖ ∀x ∈ X.

The inf over all such c is the norm ‖`‖ of `,

‖`‖ = sup
x 6=0, x∈X

|`(x)|
‖x‖

. (?)

Theorem 6.1. A linear functional ` on a normed space is bounded if and only if it is
continuous.

Proof. It is useful to recall that

Theorem 6.2. Let X, Y be metric spaces. Then f : X → Y is continuous if and only if
f(xn) is a convergent sequence in Y whenever xn is convergent in X.

Remark. Continuity =⇒ the sequence condition in any topological space. That the
sequence condition =⇒ continuity follows from the fact that the topology has a countable
basis at a point. (In a metric space, B2−n(x), say.) Specifically, suppose the function is not
continuous. Then there is an open set U ⊂ Y such that f−1(U) is not open. So there is
x ∈ f−1(U) such that for all n B2−n(x) 6⊂ f−1(U). Now let xn be a sequence such that

(1) xn ∈ B2−n(x) \ f−1(U) for n odd.
(2) xn = x for n even.

Clearly xn → x. However, f(xn) cannot converge since limk f(x2k) = f(x) and any limit
point of f(x2k+1) lies in the closed set U c containing all the points f(x2k+1).

In the normed space context, note that

|`(xn)− `(x)| ≤ ‖`‖ ‖xn − x‖ ,

so boundedness certainly implies continuity.
Conversely, if ` is unbounded then we can find vectors xn so that `(xn) ≥ n ‖xn‖. Since

this inequality is homogeneous under scaling, we may suppose that ‖xn‖ = 1/
√
n, say. Thus

xn → 0 and `(xn)→∞, so ` is not continuous. �

The set X ′ of all bounded linear functionals on X is called the dual of X. It is a linear
space, and in fact a normed space under the norm (?). (It is straightforward to show that
(?) defines a norm.)

Theorem 6.3. The dual X ′ of a normed space X is a Banach space.
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Proof. We need to show X ′ is complete. Suppose `m is a Cauchy Sequence. Then for
each x ∈ X we have

|`n(x)− `m(x)| ≤ ‖`n − `m‖ ‖x‖ ,
so `n(x) is a Cauchy sequence of scalars. Let

`(x) = lim
n→∞

`n(x) ∀x ∈ X.

It is easy to see that ` is linear. Let us show that it is bounded. Since | ‖`n‖ − ‖`m‖ | ≤
‖`n − `m‖ (this follows from sub-additivity), we see that the sequence ‖`n‖ is Cauchy, and
thus bounded. So,

|`(x)| ≤ sup
n
‖`n‖ ‖x‖

and ` is bounded. Similarly,

|`n(x)− `(x)| ≤ sup
m≥n
‖`n − `m‖ ‖x‖ ,

so
‖`n − `‖ ≤ sup

m≥n
‖`n − `m‖

and it follows that `n → `. �

Of course, all of this could be vacuous. How do we know that there are any bounded
linear functionals? Here the Hahn-Banach theorem provides the answer.

Theorem 6.4. Let y1, . . . , yN be N linearly independent vectors in a normed space X
and α1, . . . , αN arbitrary scalars. Then there is a bounded linear functional ` ∈ X ′ such that

`(yj) = αj, j = 1, . . . , N.

Proof. Let Y = span{y1, . . . , yN} and define ` on Y by

`(
N∑
j=1

bj) =
N∑
j=1

bjαj.

(We use linear independence here to guarantee that ` is well defined.) Clearly, ` is linear.
Furthermore, since Y is finite dimensional ` is bounded.

(Explicitly, since any two norms on a finite dimensional space are equivalent, we can find
c such that ∑

j

|bj| ‖yj‖ ≤ c

∥∥∥∥∥∑
j

bjyj

∥∥∥∥∥ .
Thus, `(y) ≤ c supj |αj| ‖y‖ for y ∈ Y .)

Thus ` is a linear functional on Y dominated by the norm ‖·‖. By the Hahn-Banach
theorem, it has an extension to X that is also dominated by ‖·‖, i.e., that is bounded. �

A closed subspace Y of a normed space X is itself a normed space. If X is a Banach
space, so is Y . A linear functional ` ∈ X ′ on X can be restricted to Y and is still bounded.
That is there is a restriction map R : X ′ → Y ′ such that

R(`)(y) = `(y) ∀y ∈ Y.
It is clear that R is a linear map and that

‖R(`)‖ ≤ ‖`‖ .
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The Hahn-Banach Theorem shows that R is surjective. On the other hand, unless Y = X,
the kernel of R is certainly non-trivial. To see this, let x be a vector in X \ Y and define `
on span{x} ∪ Y by

`(ax+ y) = a ∀a ∈ F and y ∈ Y.
Then ` is bounded on the closed subspace span{x} ∪ Y and by Hahn-Banach has a closed
extension. Clearly R(`) = 0. The kernel of R is denoted Y ⊥, so

Y ⊥ = {` ∈ X ′ : `(y) = 0 ∀y ∈ Y },
and is a Banach space.

Now the quotient space X/Y is defined to be the set of “cosets of Y,”

{Y + x : x ∈ X}.
The coset Y + x is denoted [x]. The choice of label x is, of course, not unique as x+ y with
y ∈ Y would do just as well. It is a standard fact that

[x1] + [x2] = [x1 + x2]

gives a well defined addition on Y/X so that it is a linear space.

Lemma 6.5. If Y is a closed subspace of a normed space then

‖[x]‖ = inf
y∈Y
‖x+ y‖

is a norm on X/Y . If X is a Banach space, so is X/Y .

Proof. Exercise. �

A bounded linear functional that vanishes on Y , that is an element ` ∈ Y ⊥, can be
understood as a linear functional on X/Y since the definition

`([x]) = `(x)

is unambiguous. Thus we have a map J : Y ⊥ → (X/Y )′ defined by J(`)([x]) = `(x).
Conversely, there is a bounded linear map Π : X → X/Y given by Π(x) = [x] and any
linear functional ` ∈ (X/Y )′ pulls back to a bounded linear functional ` ◦ Π in Y ⊥. Clearly
J(` ◦ Π) = `. Thus we have, loosely, that

(X/Y )′ = Y ⊥.





LECTURE 7

Isometries of a Banach Space

Reading: §5.3 of Lax.

Definition 7.1. Let X, Y be normed spaces. A linear map T : X → Y is bounded if
there is c > 0 such that

‖T (x)‖ ≤ c ‖x‖ .
The norm of T is the smallest such c, that is

‖T‖ = sup
x 6=0

‖T (x)‖
‖x‖

.

Theorem 7.1. A linear map T : X → Y between normed spaces X and Y is continuous
if and only if it is bounded.

Remark. The proof is a simple extension of the corresponding result for linear function-
als.

An isometry of normed spaces X and Y is a map M : X → Y such that

(1) M is surjective.
(2) ‖M(x)−M(y)‖ = ‖x− y‖.

Clearly translations Tu : X → X, Tu(x) = x+ u are isometries of a normed linear space. A
linear map T : X → Y is an isometry if T is surjective and

‖T (x)‖ = ‖x‖ ∀x ∈ X.
A map M : X → Y is affine if M(x) − M(0) is linear. So, M is affine if it is the

composition of a linear map and a translation.

Theorem 7.2 (Mazur and Ulam 1932). Let X and Y be normed spaces over R. Any
isometry M : X → Y is an affine map.

Remark. The theorem conclusion does not hold for normed spaces over C. In that
context any isometry is a real -affine map (M(x)−M(0) is real linear), but not necessarily
a complex-affine map. For example on C([0, 1],C) the map f 7→ f (complex conjugation) is
an isometry and is not complex linear.

Proof. It suffices to show M(0) = 0 =⇒ M is linear. To prove linearity it suffices to
show

M

(
1

2
(x+ y)

)
=

1

2
(M(x) +M(y)) ∀x, y ∈ X.

(Why?)
Let x and y be points in X and z = 1

2
(x+ y). Note that

‖x− z‖ = ‖y − z‖ =
1

2
‖x− y‖ ,
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so z is “half-way between x and y.” Let

x′ = M(x), y′ = M(y), z′ = M(z).

We need to show 2z′ = x′ + y′. Since M is an isometry,

‖x′ − z′‖ = ‖y′ − z′‖ =
1

2
‖x′ − y′‖ ,

and all of these are equal to 1
2
‖x− y‖. So z′ is “half-way between x′ and y′.” It may happen

that 1
2
(x′ + y′) is the unique point of Y with this property (in which case we are done). this

happens, for instance, if the norm in Y is strictly sub-additive, meaning

βx′ 6= αy′ =⇒ ‖x′ + y′‖ < ‖x′‖+ ‖y′‖ .
In general, however, there may be a number of points “half-way between x′ and y′.”

So, let

A1 = {u ∈ X : ‖x− u‖ = ‖y − u‖ =
1

2
‖x− y‖},

and

A′1 = {u′ ∈ Y : ‖x′ − u′‖ = ‖y′ − u′‖ =
1

2
‖x′ − y′‖}.

Since M is an isometry, we have A′1 = M(A1). Let d1 denote the diameter of A1,

d1 = sup
u,v∈A1

‖u− v‖ .

This is also the diameter of A′1. Now, let

A2 =

{
u ∈ A1 : v ∈ A1 =⇒ ‖u− v‖ ≤ 1

2
d1

}
,

the set of “centers of A1.” Note that z ∈ A2 since if u ∈ A1 then 2z − u ∈ A1:

‖x− (2z − u)‖ = ‖u− y‖ = ‖x− u‖ = ‖y − (2z − u)‖ .
Similarly, let

A′2 =

{
u′ ∈ A′1 : v′ ∈ A′1 =⇒ ‖u′ − v′‖ ≤ 1

2
d1

}
.

Again, since M is an isometry we have A′2 = M(A2). In a similar way, define decreasing
sequences of sets, Aj and A′j, inductively by

Aj = {u ∈ Aj−1 : v ∈ Aj−1 =⇒ ‖u− v‖ ≤ 1

2
diam(Aj−1)},

and

A′j = {u′ ∈ A′j−1 : v′ ∈ A′j−1 =⇒ ‖u′ − v′‖ ≤ 1

2
diam(A′j−1)}.

Again M(Aj) = A′j and z ∈ Aj since Aj−1 is invariant under inversion around z: u ∈
Aj−1 =⇒ 2z − u ∈ Aj−1. Since diam(Aj) ≤ 21−jd1 we conclude that

∞⋂
j=1

= {z}, and
∞⋂
j=1

A′j =

{
1

2
(x′ + y′)

}
.

Since z′ ∈ A′j for all j, (?) follows. �
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Homework I

Due: February 15, 2008

(1) (Ex. 1, Ch.1) Let X be a linear space. Let {Sα : α ∈ Ω} be a collection of
subspaces. (Here Ω is some index set, not necessarily finite or countable.) Prove
that
(a) The sum

∑
α Sα = {x1 + · · ·+ xn : xj ∈ Sαj , αj ∈ Ω, j = 1, . . . , n, n ∈ N}

is a subspace.
(b) The intersection ∩α∈ΩSα is a subspace.
(c) The union ∪αSα is a subspace provided Ω is a totally ordered set and α ≤ β

=⇒ Sα ⊂ Sβ.

(2) (Ex. 2, Ch. 4) The Cesaro means of a bounded sequence cn are the numbers

Mn(c) =
1

n

n∑
j=1

cj.

A bounded sequence c is called Cesaro summable if limn→∞Mn(c) exists.
(a) Show that any convergent sequence c is Cesaro summable and

lim
n→∞

Mn(c) = lim
n→∞

cn.

(b) Give an explicit example of a bounded Cesaro summable sequence that is not
convergent.

(c) Show there is a Banach limit LIM such that for any bounded Cesaro summable
sequence LIMn→∞ cn = limn→∞MN(c). (A Banach limit is a linear functional
on the space `∞ of bounded sequences which agrees with the limit on convergent
sequence, is invariant under shifts, and is bounded above and below by lim inf
and lim sup.)

(3) (Ex. 2, Ch.5) Let X be a normed linear space and Y a subspace of X. Prove that
the closure of Y is a linear subspace of X.

(4) (Ex. 3, Ch.5) Show that if X is a Banach space and Y is a closed subspace of X,
then the quotient space X/Y is complete.

(5) Let M : X → Y be a continuous map between normed spacse X and Y such that

M(0) = 0 and M

(
1

2
(x+ y)

)
=

1

2
M(x) +

1

2
M(y), ∀x, y ∈ X.

Show that M is linear.



(6) Let ` ∈ c?0 be a bounded linear functional on c0. Prove that there is a sequence
b ∈ `1 such that

`(a) =
∞∑
j=1

bjaj.

Conclude that c?0 is isometrically isomorphic to `1.

(7) Let ` ∈ `?1 be a bounded linear functional on `1. Prove that there is a sequence
b ∈ `∞ such that

`(a) =
∞∑
j=1

bjaj.

Conclude that `?1 is isometrically isomorphic to `∞.

(8) Show that `?p is isometrically isomorphic to `q, 1 < p <∞ and 1/p+ 1/q = 1.

(9) LetM = {a ∈ `p : a2n = 0, ∀n} ⊂ `p. Show thatM is a closed subspace and that
`p/M is isometrically isomorphic to `p.

(10) Let X1, X2 be Banach spaces, with norms ‖·‖1 , ‖·‖2. Define the direct sum

X1 ⊕ X2 = {(x, y) : x ∈ X1 and y ∈ X2},
with coordinatewise addition and scalar multiplication. For each p ∈ [1,∞] define
the norm

‖(x, y)‖p =

{
(‖x‖p1 + ‖y‖p2)

1/p
1 ≤ p <∞,

max{‖x‖1 , ‖y‖2} p =∞.
Show that X1⊕X2 is a Banach space under ‖·‖p and all these norms are equivalent.

(11) Consider X = L1(R) + L2(R) = {g + h : g ∈ L1(R) and h ∈ L2(R)}. Given
p ∈ [1,∞), define

‖f‖inf
p = inf{(‖g‖pL1 + ‖h‖pL2)

1/p : f = g + h, g ∈ L1 and h ∈ L2}.

Show that ‖f‖inf
p is a norm and that all of these norms are equivalent. (Challenge:

Is X a Banach space?)

(12) Consider Y = L1(R)∩L2(R), which is a subspace of X from the previous problem.
(a) For each p ∈ [1,∞), define

‖f‖+
p =

1

2

(
‖f‖pL1 + ‖f‖pL2

)1/p
,

for f ∈ Y . Show that ‖·‖+
p is a norm and all of these norms are equivalent.

(b) Show that Y is a Banach space.

(c) Show that Y is dense in X under any of the norms ‖·‖inf
p .

(d) Show that ‖f‖inf
p ≤ ‖f‖

+
p . Is there a constant c such that ‖f‖+

p ≤ c ‖f‖inf
p ?



Part 3

Hilbert Spaces and Applications





LECTURE 8

Scalar Products and Hilbert Spaces

Reading: §6.1 and §6.2 of Lax.

Definition 8.1. A scalar product on a linear space X over R is a real valued function
〈·, ·〉 : X ×X → R with the following properties

(1) Bilinearity: x 7→ 〈x, y〉 and y 7→ 〈x, y〉 are linear functions.
(2) Symmetry: 〈x, y〉 = 〈y, x〉.
(3) Positivity: 〈x, x〉 > 0 if x 6= 0. (Note that 〈0, 0〉 = 0 by bilinearity.

A (complex) scalar product on a linear space X over C is a complex valued function
〈·, ·〉 : X ×X → C with the properties

(1) Sesquilinearity: x 7→ 〈x, y〉 is linear and y 7→ 〈x, y〉 is skewlinear,

〈x, y + ay′〉 = 〈x, y〉+ a? 〈x, y′〉 .

(2) Skew symmetry: 〈x, y〉 = 〈y, x〉?.
(3) Positivity: 〈x, x〉 > 0 for x 6= 0.

Given a (real or complex) scalar product, the associated norm is

‖x‖ =
√
〈x, x〉.

Remark. A complex linear space is also a real linear space, and associated to any
complex inner product is a real inner product:

(x, y) = Re 〈x, y〉 .

Note that the associated norms are the same, so the metric space structure is the same
whether or not we consider the space as real or complex. Note that

(ix, y) = (x, iy). (?)

and the real and complex inner products are related by

〈x, y〉 = (x, y)− i(ix, y) = (x, y) + i(x, iy). (??)

Conversely, given any real inner product on a complex linear space which satisfies (?), (??)
gives a complex inner product.

We have not shown that the definition ‖x‖ =
√
〈x, x〉 actually gives a norm. Homogeneity

and positivity are clear. To verify subadditivity we need the following important Theorem.

Theorem 8.1 (Cauchy-Schwarz). A real or complex scalar product satisfies

|〈x, y〉| ≤ ‖x‖ ‖y‖ ,

with equality only if ax = by.

8-1
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Remark. A corollary is that

‖x‖ = max
‖u‖=1

| 〈x, u〉 |,

from which follows sub-additivity

‖x+ y‖ ≤ ‖x‖+ ‖y‖ .

Proof. It suffices to consider the real case, since given x, y we can always find θ so that〈
eiθx, y

〉
= eiθ 〈x, y〉 is real. Also, we may assume y 6= 0.

So let 〈·, ·〉 be a real inner product and t ∈ R. Then

‖x+ ty‖2 = ‖x‖2 + 2t 〈x, y〉+ t2 ‖y‖2 .

Minimizing the r.h.s. over t we find that,

tmin = −〈x, y〉
‖y‖2 ,

and

0 ≤ ‖x‖2 − 〈x, y〉
2

‖y‖2 .

The Cauchy-Schwarz inequality follows. �

Another important, related result, is the parallelogram identity

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 .

von Neumann has shown that any norm which satisfies the parallelogram law comes from
an inner product.

Definition 8.2. A linear space with a scalar product that is complete in the induced
norm is a Hilbert space.

Any scalar product space can be completed in the norm. It follows from the Schwarz
inequality that the scalar product is cts. in each of its factors and extends uniquely to the
completion, which is thus a Hilbert space.

Examples:

(1) `2 is a Hilbert space with the inner product

〈a, b〉 =
∑
j

ajb
?
j ,

which is finite by the Hölder inequality.
(2) C[0, 1] is an inner product space with respect to the inner product

〈x, y〉 =

∫ 1

0

x(t)y(t)?dt.

It is not complete. The completion is known as L2[0, 1] and can be associated with
the set of equivalence classes of Lebesgue square integrable functions.

Remark. There is no standard as to which factor of the inner product is skew-linear.
In the physics literature, it is usually the first factor; in math it is usually the second.
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Definition 8.3. Two vectors in an inner product space are orthogonal if

〈x, y〉 = 0.

The orthogonal complement of a set s is

S⊥ = {v : 〈v, y〉 = 0 ∀y ∈ Y }.

Lemma 8.2. Given any set S in a Hilbert space, S⊥ is a closed subspace.

Proof. That S⊥ is a subspace is clear. That it is closed follows, from continuity of the
inner product in each factor, since if vn → v, vn ∈ S⊥, then

〈v, y〉 = lim
n
〈vn, y〉 = 0 for y ∈ S.

�

Theorem 8.3. Let H be a Hilbert space, Y a closed subspace of H and Y ⊥ the orthogonal
complement of Y . Then

(1) Any vector x ∈ H can be written uniquely as a linear combination

x = y + v, y ∈ Y and v ∈ Y ⊥.
(2) (Y ⊥)⊥ = Y.

To prove this theorem, we need

Lemma 8.4. Given a nonempty closed, convex subset K of a Hilbert space, and a point
x ∈ H, there is a unique point y in K that is closer to x than any other point ofK.

Proof. This follows if we show that H is uniformly convex, by the Theorem of Clarkson
from lecture 5. Let x, y be unit vectors. It follows from the parallelogram law that∥∥∥∥1

2
x+ y

∥∥∥∥2

= 1− 1

4
‖x− y‖2 ,

so ∥∥∥∥1

2
x+ y

∥∥∥∥ ≤ 1−

(
1−

√
1− 1

4
‖x− y‖2

)
︸ ︷︷ ︸

ε‖x−y‖

.

�

Proof of Theorem. According to the Lemma there is a unique point y ∈ Y closest
to a given point x ∈ H. Let v = x− y. We claim that 〈v, y′〉 = 0 for any y′ ∈ Y . Indeed, we
must have

‖v‖2 ≤ ‖v + ty′‖2
= ‖v‖2 + 2tRe 〈v, y′〉+ t2 ‖y′‖2

for any t. In other words the function

0 ≤ 2tRe 〈v, y′〉+ t2 ‖y′‖2
for all t,

which can occur only if Re 〈v, y′〉 = 0. Since this holds for all y′ ∈ Y we get 〈v, y′〉 = 0 by
complex linearity.

Thus the decomposition x = y+ v is possible. Is it unique? Suppose x = y+ v = y′+ v′.
Then y − y′ = v − v′ ∈ Y ∩ Y ⊥. But z ∈ Y ∩ Y ⊥ =⇒ 〈z, z〉 = 0 so z = 0.

Part (3) is left as a simple exercise. �





LECTURE 9

Riesz-Frechet and Lax-Milgram Theorems

Reading: §6.3 of Lax.
We have already seen that for fixed y ∈ H, a Hilbert space, the map `y(x) = 〈x, y〉 is a

bounded linear functional — boundedness follows from Cauchy-Schwarz. In fancy language
y 7→ `y embeds H into H?, the dual of H. In fact, since

‖`y‖ = sup
x

|〈x, y〉|
‖x‖

= ‖y‖ ,

again by Cauchy-Schwarz, this map is an isometry onto it’s range. In a real Hilbert space,
this is a linear map; in a complex Hilbert space, it is skew-linear:

`y+αy′ = `y + α?`y′ .

The question now comes up whether we get every linear functional in H? this way? The
answer turns out to be “yes.”

Theorem 9.1 (Riesz-Frechet). Let `(x) be a bounded linear functional on a Hilbert space
H. Then there is a unique y ∈ H such that

`(x) = 〈x, y〉 .

Before turning to the proof, let us state several basic facts, whose proof is left as an
exercise:

Lemma 9.2.

(1) Let X be a linear space and ` a non-zero linear functional on X. Then the null
space of ` is a linear subspace of co-dimension 1. That is, ifY = {y : `(y) = 0}
then there exists x0 6∈ Y and any vector x ∈ X may be written uniquely as

x = αx0 + y, α ∈ F and y ∈ Y.

(2) If two linear functionals `, m share the same null space, they are constant multiples
of each other: ` = cm.

(3) If X is a Banach space and ` is bounded, then the null-space of ` is closed.

Proof. If ` = 0 then y = 0 will do, and this is the unique such point y.
If ` 6= 0, then it has a null space Y , which by the lemma is a closed subspace of co-

dimension 1. The orthogonal complement Y ⊥ must be one dimensional. Let ŷ be a unit
vector in Y ⊥ — it is unique up to a scalar multiple. Then m(x) = 〈x, ŷ〉 is a linear functional,
with null-space Y . Thus ` = αm and we may take y = α?ŷ.

To see that y is unique, note that if 〈x, y〉 = 〈x, y′〉 for all x then ‖y − y′‖ = 0, so
y = y′. �

In applications, one is often given not a linear functional, but a quadratic form:
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Definition 9.1. Let H be a Hilbert space over R. A bi-linear form on H is a function
B : H ×H → R such that

x 7→ B(x, y) and y 7→ B(x, y)

are linear maps. A skew-linear form on a Hilbert space H over C is a map B : H ×H → C
such that

x 7→ B(x, y) is linear, and y 7→ B(x, y) is skew-linear.

A quadratic form refers to a bi-linear form or a skew-linear form depending on whether the
field of scalars is R or C. A quadratic form B on H is bounded if there is a constant c > 0
such that

|B(x, y)| ≤ c ‖x‖ ‖y‖ ,
and is bounded from below if there is a constant b > 0 such that

|B(y, y)| ≥ b ‖y‖2 .

Theorem 9.3 (Lax-Milgram). Let H be a Hilbert space, over R or C, and let B be a
bounded quadratic form on H that is bounded from below. Then ever bounded linear functional
` ∈ H? may be written

`(x) = B(x, y), for unique y ∈ H.

Proof. For fixed y, x 7→ B(x, y) is a bounded linear functional. By Riesz-Frechet there
exists z : H 7→ H such that

B(x, y) = 〈x, z(y)〉 .
It is easy to see that the map y 7→ z(y) is linear. Thus the range of z,

ran z = {z(y) : y ∈ H} ,

is a linear subspace of H.
Let us prove that ran z is a closed subspace. Here we need the fact that B is bounded

from below. Indeed,

B(y, y) = 〈y, z(y)〉 ,
so

b ‖y‖2 ≤ ‖y‖ ‖z(y)‖ =⇒ b ‖y‖ ≤ ‖z(y)‖ .
If yn is any sequence then

‖yn − ym‖ ≤ b−1 ‖z(yn)− z(ym)‖ .

Thus z(yn) → z0 =⇒ yn Cauchy =⇒ yn → y0, and it is easy to see we must have
z0 = z(y0). Thus z0 ∈ ran z, so ran z is closed.

Now we show that ran z = H. Since ran z is closed it suffices to show ran z⊥ = {0}. Let
x ⊥ ran z. It follows that

B(x, y) = 〈x, z(y)〉 = 0 ∀y ∈ H.

Thus B(x, x) = 0 and so x = 0 since ‖x‖2 ≤ b−1 |B(x, x)| .
Since ran z = H we see by Riesz-Frechet that any linear functional ` may be written

`(x) = 〈x, z(y)〉 = B(x, y) for some y. Uniqueness of y follows as above, since if B(x, y) =
B(x, y′) for all x we conclude that ‖y − y′‖ = 0 since B is bounded from below. �
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Application: Radon-Nikodym Theorem

Theorem 9.4 (Radon-Nikodym). Let M , Σ be a measurable space on which we have
defined two finite non-negative measures µ and ν. If µ(A) = 0 =⇒ ν(A) = 0 for all A ∈ Σ
then there exists a Σ−measurable function h : M → [0,∞) such that

ν(A) =

∫
A

hdµ, A ∈ Σ.

Proof. Consider the measure µ+ ν and the Hilbert space L2(µ+ ν),

‖f‖2 =

∫
M

f 2d(µ+ ν).

Define a linear functional

`(f) =

∫
M

fdµ.

Since

|`(f)|2 ≤ µ(M)

∫
M

f 2dµ ≤ µ(M) ‖f‖2 ,

it follows that ` is bounded (on L2(µ+ ν)). Thus ∃g ∈ L2(µ+ ν) such that∫
M

fdµ =

∫
M

fgd(µ+ ν).

Rewrite this as, ∫
M

f(1− g)dµ =

∫
M

fdν. (?)

Let F = {x ∈M : g(x) ≤ 0} and plug f = χF into (?). Then

µ(F ) ≤
∫
F

(1− g)dµ =

∫
F

gdν ≤ 0.

Thus µ(F ) = 0. Likewise let G = {x ∈ M : g(x) > 1} and plug f = χG into (?). If
µ(G) > 0 then

0 >

∫
G

(1− g)dµ =

∫
G

gdν > ν(G),

which is a contradiction. Thus µ(G) = 0. Hence, after modifying g on the µ null set F ∪G
we may assume that (?) holds with

0 < g(x) ≤ 1.

But then given E ∈ Σ, plugging f = g−1χE into (?) we get

ν(E) =

∫
M

fgdν =

∫
M

χE
1− g
g

dµ =

∫
E

1− g
g

dµ.

Thus take h = (1− g)/g. �





LECTURE 10

Geometry of a Hilbert space and Gram-Schmidt process

Reading: §6.4 of Lax.
Recall that the linear span of a set S in a linear space X is the collection of finite linear

combinations of elements of S:

spanS =

{
n∑
j=1

αjxj : xj ∈ S, αj ∈ F, j = 1, . . . , n, n ∈ N

}
.

This is also the smallest subspace containing S:

spanS = ∩{Y : Y ⊂ X is a subspace and S ⊂ Y }.
If X is a Banach space, it is natural to look at the smallest closed subspace containing S:

spanS = ∩{Y : Y ⊂ X is a closed subspace and S ⊂ Y }.

Proposition 10.1. Let X be a Banach space. Then spanS = spanS.

The proof is left as an exercise.
In a Hilbert space we have a geometric characterization of spanS:

Theorem 10.2. Let S ⊂ H be any subset of a Hilbert space H. Then

spanS =
(
S⊥
)⊥
.

That is, y ∈ spanS if and only if y is perpendicular to everything that is perpendicular to S:

〈y, z〉 = 0 for all z such that 〈x, z〉 = 0 for all x ∈ S.

Proof. Recall that a closed subspace Y satisfies (Y ⊥)⊥ = Y . Thus it suffices to show
(spanS)⊥ = S⊥. Since S ⊂ spanS we clearly have (spanS)⊥. On the other hand, if z ∈ S⊥.
Thus z is perpendicular to spanS and by continuity of the scalar product z ⊥ spanS =
spanS. Thus S⊥ ⊂ (spanS)⊥. �

Definition 10.1. A collection of vectors S in an inner product space H is called
orthonormal if

〈x, y〉 =

{
1 x = y ∈ S
0 x 6= y, x, y ∈ S.

An orthonormal collection S is called an orthonormal basis if spanS = H.

Lemma 10.3. Let S be an orthonormal set of vectors in a Hilbert space H. Then the
spanS consists of all vectors of the form

x =
∞∑
j=1

αjxj, xj ∈ S, j = 1, . . . ,∞, (?)
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where the αj are square summable:
∞∑
j=1

|αj|2 <∞.

The sum converges in the Hilbert space:∥∥∥∥∥x−
n∑
j=1

αjxj

∥∥∥∥∥→ 0,

and

‖x‖2 =
∞∑
j=1

|αj|2.

Furthermore, the sum may be written

x =
∑
y∈S

〈x, y〉 y.

In particular, 〈x, y〉 6= 0 for only countably many elements y ∈ S.

Remark. Most orthonormal sets encountered in practice are countable, so we would
tend to write S = {x1, . . . , } and

x =
∞∑
j=1

〈x, xj〉xj.

However, the lemma holds even for uncountable orthonormal sets.

Proof. It is clear that all vectors of the form (?) are in spanS = spanS. Furthermore
vectors of this form make up a subspace, which is easily seen to be closed. (Exercise: show
that this subspace is closed. This rests on the fact that a subset of a complete metric space
is closed iff it is sequentially complete.) By definition spanS is contained in this subspace.
Thus the two subspaces are equal.

The remaining formulae are easy consequences of the form (?). �

Theorem 10.4. Every Hilbert space contains an orthonormal basis.

Proof. We use Zorn’s Lemma. Consider the collection of all orthonormal sets, with
S ≤ T iff S ⊂ T . This collection is non-empty since any unit vector makes up a one element
orthonormal set.

A totally ordered collection has an upper bound — the union of all sets in the collection.
Thus there is a maximal orthonormal set. Call it Smax.

Suppose spanSmax ( X. Then, spanS⊥max is a non-trivial closed subspace. Let y ∈
spanS⊥max be a unit vector. So Smax ∪ {y} is an orthonormal set contradicting the fact that
Smax is maximal. �

Corollary 10.5 (Bessel’s inequality). Let S be any orthonormal set in a Hilbert space
H (not necessarily a basis), then∑

y∈S

|〈x, y〉|2 ≤ ‖x‖2 for all x ∈ H.

Equality holds for every x if and only if S is a basis.
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If the Hilbert space H is separable — it contains a countable dense set — then any
orthonormal basis is countable. In this case we can avoid Zorn’s Lemma. The foundation of
this is the Gram-Schmidt process.

Theorem 10.6 (Gram-Schmidt Process). Let yj be a sequence of vectors in a Hilbert
space. Then there is an orthonormal sequence xj such that

span{y1, . . . , yn} ⊂ span{x1, . . . , xn}.

Proof. The proof is constructive. We may assume, without loss, that {y1, . . . , yn} is
linearly independent for each n. (Otherwise throw out vectors yn until this is the case.)
Then y1 6= 0 so let

x1 =
y1

‖y1‖
.

Clearly span{x1} = span{y1}.
Now, suppose we are given x1, . . . , xn−1 such that

span{x1, . . . , xn−1} = span{y1, . . . , yn−1}.
Let

xn =
yn −

∑n−1
j=1 〈yn, xn−1〉xn−1∥∥∥yn −∑n−1
j=1 〈yn, xn−1〉xn−1

∥∥∥ .
This is OK since yn 6=

∑n
j=1 〈yn, xn−1〉 ∈ span{y1, . . . , yn−1}. Clearly

span{x1, . . . , xn} = span{y1, . . . , yn}.
By induction, the result follows. �

Corollary 10.7. Let H be a separable Hilbert space. Then H has a countable orthonor-
mal basis.

Finally, let us discuss the isometries of Hilbert spaces.

Theorem 10.8. Let H and H ′ be Hilbert spaces. Given an orthonormal basis S for H,
an orthonormal set S ′ ⊂ H ′ and a one-to-one onto map f : S → S ′, define a linear map
H → H ′ via ∑

y∈S

αyy
Tf7−−−→

∑
y∈S

αyf(y).

Then T is a linear isometry onto spanS ′ ⊂ H ′. Furthermore, any isometry of H with a
subspace of H ′ is of this form.

Corollary 10.9. Two Hilbert spaces are isomorphic iff their orthonormal bases have
equal cardinality. In particular, every Hilbert space is isomorphic with `2(S) for some set S.
Any separable, infinite dimensional Hilbert space is isomorphic to `2.

Remark. For an arbitrary set S, `2(S) is defined to be the set of functions f : S → R
or C such that ∑

y∈S

|f(y)|2 <∞.

Note that f ∈ `2(S) =⇒ {y : f(y) 6= 0} is countable.

The proof of these results is left as an exercise.
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Locally Convex Spaces





LECTURE 11

Locally Convex Spaces and Spaces of Test Functions

Reading: §13.-13.2 and §B.1 of Lax.
A Banach space is one example of a topological vector space (TVS), which is a linear

space X together with a topology on X such that the basic operations of addition and scalar
multiplication are continuous functions.

Definition 11.1. A topological vector space is a linear space X with a Hausdorff topol-
ogy such that

(1) (x, y) 7→ x + y is a continuous map from X ×X (with the product topology) into
X.

(2) (k, x) 7→ kx is a continuous map from F ×X (with the product topolgoy, F = R or
C) into X.

Remark. Recall that a Hausdorff space is one in which points may be separated by open
sets: given x, y ∈ X, x 6= y there are disjoint open sets U, V , U ∩ V = ∅ such that x ∈ U
and y ∈ V .

Theorem 11.1. Let X be a TVS and let U ⊂ X be open. Then

(1) For any x ∈ X, U − x = {y : y + x ∈ U} is open.
(2) For any scalar k 6= 0, kU = {y : k−1y ∈ U} is open
(3) Every point of U is interior: given x ∈ U and y ∈ X there is ε > 0 such that for

any scalar t with |t| < ε we have x+ ty ∈ U .

Proof. The set U − x is the inverse image of U under the map y 7→ y + x. Thus
(1) follows from continuity of the map y 7→ y + x which follows from joint continuity of
(y, x) 7→ y + x. (Why?)

Likewise (2) follows from continuity of y 7→ k−1y.
Since U − x is open it suffices to suppose x = 0 ∈ U . For fixed y ∈ X the map t 7→ ty

is continuous. (Why?) Thus {t : ty ∈ U} is open. Since this set contains t = 0 it must
contain an interval (−ε, ε) (or an open ball at the origin if the field of scalars is C). �

The class of TVSs is rather large. However, almost all of the TVSs important to analysis
have the following property:

Definition 11.2. A locally convex space (LCS) is a TVS X such that every open set
containing the origin contains an open convex set containing the origin. That is, there is a
basis at the origin consisting of open convex sets.

Given a LCS, X, we define the dual X ′ to be the set of all continuous linear functional
on X. A LCS space shares the property of separation of points by linear functionals:

Theorem 11.2. Let X be a LCS and let y 6= y′ be points of X. There is a linear
functional ` ∈ X ′ such that

`(y) 6= `(y′).
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Proof. Of course, we use the Hahn-Banach theorem. Specifically the hyperplane sepa-
ration Theorem 2.1.

First, it suffices to suppose the field of scalars is R, for if we construct a suitable real
linear functional `r on a complex LCS we can complexify it

`(x) = `r(x)− i`r(ix).

Now, without loss we suppose that y′ = 0. Since the topology on X is Hausdorff, there is
an open set U 3 y′ with y 6∈ U . Since X is locally convex, we may suppose U to be convex.
Replacing U with U ∩(−U) we may assume U is symmetric about 0, so x ∈ U =⇒ −x ∈ U .
Since all points of U are interior, Theorem 2.1 asserts the existence of a linear functional `
with 1 = `(y) and `(x) < 1 for x ∈ U . In fact, the proof shows that

`(x) ≤ pU(x) ∀x ∈ X,
where pU is the gauge function of U ,

pU(x) = inf{t > 0 : t−1x ∈ U}.
We need to show that ` is continuous. It suffices to show `−1(a, b) is open for any

a < b ∈ R. Let t ∈ (a, b). Let x0 be any point with `(x0) = t. Then, `−1(a − t, b − t) =
`−1(a, b) − x0 3 0. (Why?) Thus it suffices to suppose a < 0 < b and show that `−1(a, b)
contains an open neighborhood at 0. Let t = min{−a, b}. The given x ∈ U ,

`(tx) ≤ pU(tx) = tpU(x) < t and `(−tx) ≤ pU(−tx) = tpU(−x) < t.

Thus tU ⊂ `−1(−t, t) ⊂ (a, b). �

Converse to this construction is the following idea

Theorem 11.3. Let X be linear space and let L be any collection of linear functionals
on X that separates points: for any y, y′ ∈ X there is ` ∈ L such that `(x) 6= `(x′). Endow
X with the weakest topology such that all elements of L are continuous. Then X is a LCS,
and the dual of X is

X ′ = spanL = {finite linear combinations of elements of L}.

Remark. Recall that a topology on X is a collection U of subsets of X that includes
X and ∅, and is closed under unions and finite intersections. The intersection of a family of
topologies is also a topology. Thus the weakest topology with property A is the intersection
of all topologies with property A.

Proof. Exercise. �

What are some examples of LCSs? First off, any Banach space is locally convex, since
the open balls at the origin are a basis of convex sets. But not every LCS has a norm which
is compatible with the topology. By far the most important examples, though are so-called
spaces of text functions and their duals, the so-called spaces of distributions.



LECTURE 12

Generation of a LCS by seminorms and Fréchet Spaces

Reading: §5.2 of Reed and Simon (or just these notes)

Test functions

The theory of distributions — due to Laurent Schwarz — is based on introducing a
LCS of “test functions” X and it’s dual X ′, a space of “distributions.” The test functions
are “nice:” we can operate on them arbitrarily with all the various operators of analysis –
differentiation, integration etc. Using integration, we embed X ↪→ X ′ via a map φ 7→ `φ:

`φ(ψ) =

∫
Rd
φ(x)ψ(x)dx.

Thus we think of a (test) function both as a map and as an “averaging” procedure. A key
identity is integration by parts

`φ(∂iψ) = −`∂iψ(φ).

This suggests that we define
∂i`(ψ) = −`(ψ)

for any distribution ` ∈ X ′. One typically uses a function notation for a distribution, writing

`(ψ) =

∫
T (x)ψ(x),

even if the “function” T doesn’t exist.
A common, and useful, space of test functions is

C∞c (Rd) = {C∞ functions on Rd with compact support.}.
We wish to topologize this set so that a sequence uk converges u if the supports of all uk
are contained in some fixed compact K ⊂ Rd and if for any choice of mult-index α =
(α1, . . . , αd) ∈ Nd we have

Dαuk = ∂α1
1 · · · ∂

αd
d uk → Dαu uniformly in K.

What is really going here is this. Define for each n ≥ 0 and each multi-index α a
semi-norm of C∞c (Rd),

pn,α(u) = sup
|x|≤2n

|Dαu(x)| .

(Recall that a semi-norm on a linear space X is a map p : X → [0,∞) which is positive
homogeneous (p(ax) = |a|p(x)) and sub-additive (p(x + y) ≤ p(x) + p(y)). It is allowed
that p(x) = 0 for x 6= 0. ) It may happen that ‖u‖n,α vanishes even if u 6= 0, however the

collection separates points (Why?):

Definition 12.1. A collection of semi-norms S separates points if

p(u) = 0 ∀p ∈ C =⇒ u = 0.

12-1
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Now endow X = C∞0 (Rd) with the smallest topology such that X is a TVS and each of
the semi-norms pn,α is continuous.

Claim. C∞c (Rd) with this topology is a LCS

Warning: this is not the standard topology on C∞c (Rd). See below.

Generation of an LCS by semi-norms

The claim follows from the following general result.

Definition 12.2. Let X be a linear space and S a family of functions f : X →M , M a
topological space (usually M = R or C). The TVS topology generated by S is the weakest
topology on X such that X is a TVS and all the functions in S are continuous.

Theorem 12.1. Given a linear space X and a collection of semi-norms S that separates
points, the TVS topology generated by S makes X is locally convex.

Conversely, given a LCS X and C a neighborhood base at the origin consisting of convex,
symmetric sets, the LCS topology on X is the TVS topology generated by S = {pU : U ∈ C}
are continuous.

Proof. First given an LCS space X let us show that the gauge function pU of a convex,
symmetric neighborhood of the origin U is continuous. To begin, note that

p−1
U [0, b) = {x ∈ X : x ∈ bU} = bU

is open for each b. Next consider the sets p−1
U (b,∞). Let x be in this set and let α = pU(x).

Consider the open neighborhood V = x+ (α− b)U then for y = x+ (α− b)y′ ∈ V we have

pU(y) ≥ pU(x)− (α− b)pU(y′) > b.

So V ⊂ p−1
U (b,∞) and thus the set is open. Continuity of pU follows since the sets [0, b),

(b,∞) as b ranges over (0,∞) generate the topology on [0,∞).
Now, any topology under which every p ∈ S is continuous certainly contains the collection

C = {p−1[0, b) : b ∈ (0,∞)},

consisting of convex, symmetric sets with the origin as an interior point. Consider the
smallest TVS topology containing this collection. It is easily seen to be locally convex. (We
need the fact that S separates points to get the Hausdorff property.) Since p = pU for
U = p−1[0, 1) we see from the above argument that all p ∈ S are continuous in this topology.
Thus this is the TVS topology generated by S.

Conversely, let T denote a given LCS topology on X. Thus T is certainly a topology un-
der whichX is a TVS and all elements of S = {pU : U a convex, symmetric neighborhood of 0}
are continuous. To prove it is the weakest such, we must show that any such topology con-
tains T . Any U ∈ C may be written as U = p−1

U ([0, 1)). Thus any topology under which
X is a TVS and all pU are continuous certainly contains C and all its translates, and thus
T . �
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Metrizable LCSs

Above we claimed that the topology on C∞0 could be given in terms of uniform conver-
gence of sequences of functions. However, in a general LCS sequential convergence may not
specify the topology — a set may fail to be closed even it contains the limits of all conver-
gent sequences of its elements — because there may not be a countable neighborhood base
at the origin. (Don’t worry too much about this.) However, if the origin has a countable
neighborhood base then it turns out that the LCS is actually metrizable, so in particular
sequential convergence specifies the topology.

Theorem 12.2. Let X be an LCS. The following are equivalent

(1) X is metrizable

(2) X has a countable neighborhood basis at the origin C consisting of convex, symmetric
sets

(3) the topology on X is generated by a countable family of semi-norms.

Proof. The equivalence of (2) and (3) is established by associating to convex, symmetric
neighborhoods of the origin the corresponding gauge function and vice versa. The details
are left as an exercise.

To show (1) =⇒ (2), suppose X is metrizable. Then X has a countable neighborhood
basis (this is a property of metric spaces), and in particular a countable neighborhood basis
at the origin. Since X is a LCS we may find a convex, symmetric open set contained in each
of the basis sets, thus obtaining a convex, symmetric, countable neighborhood basis at the
origin.

To show (2) =⇒ (1), suppose X has a countable neighborhood basis as indicated, and
let T denote it’s topology. Since C is countable we may assume, without loss, that it is
a decreasing sequence C = {U1 ⊃ U2 ⊃ · · · }. (Order the elements of C and take finite
intersections Uk 7→ U1 ∩ · · · ∩ Uk.) Let pj(x) = pUj(x), so pk(x) ≥ pj(x) if k ≥ j. Define a
metric

d(x, y) =
∞∑
j=1

2−j
pj(x− y)

1 + pj(x− y)
,

and the metric topology Td. (Recognize this? Why is this a metric? Note that the collection
{pU : U ∈ C} separates points since C is a basis.)

Clearly,
{x : d(x, 0) < 2−j−1} ⊂ Uj.

Thus T ⊂ Td (since any T open set contains a translate of some d-ball centered at each of
its points). On the other hand, if x ∈ tUk

d(x, 0) <
k∑
j=1

2−j
t

1 + t
+

∞∑
j=k+1

2−j ≤ 1

2

t

1 + t
+ 2−k−1.

Thus
2−kUk ⊂ {x : d(x, 0) < 2−k},

which shows that Td ⊂ T . Thus T = Td and X is metrizable. �

Definition 12.3. A Fréchet space is a complete, metrizable, locally convex linear space.

Remark. Recall that a metric space is complete if every Cauchy sequence converges.





LECTURE 13

The dual of an LCS

It turns out that C∞c (Rd), although a metric space with the metric suggested above,
is not complete. The completion is the space of C∞0 functions that together with all their
derivatives vanish at ∞, which could be topologized with the seminorms

pα(f) = sup
x
|Dαf(x)| .

The correct way to think of C∞c (Rd) is as an “inductive limit,” which is as the union
∪nC∞([−2n, 2n]). There is an inductive limit topology on this space, making it a com-
plete, but non-metrizable, LCS. Each of the spaces C∞([−2n, 2n]) is a Fréchet space, but
clearly the inductive limit topology is different that the (metrizable) LCS topology generated
above. It is still true that a sequence converges according to the criteria given above, but
this doesn’t give the whole picture as the space isn’t separable! (See Reed and Simon chapter
V.)

A remedy for this, that is often sufficient, is to work with the following somewhat larger
space

Definition 13.1. The Schwarz space S(Rd) consists of every C∞ function f on Rd such
that

pα,β(f) = sup
x∈Rd
|xαDβf(x)| <∞,

for every pair of multi-indices α, β ∈ Nd.

Remark. • xα = xα1
1 · · ·x

αd
d .

• Note that S(Rd) ⊂ Lp(Rd) for every p.
• Likewise f ∈ S(Rd) =⇒ Dαf ∈ Lp(Rd) for every p.

Corollary 13.1. The space S(Rd) with the topology generated by the seminorms pα,β
is a Fréchet space.

The dual space of a LCS

It is useful to use the inner product notation to denote the pairing between elements of
X and linear functionals

`(x) = 〈x, `〉 .
(Note that this inner product is linear in both factors even if we are dealing with complex
spaces.)

Given a linear space X and a linear space of linear functionals L on X that separates
points we have seen that there is a LCS topology on X such that L is the dual of X. This
topology is called the L-weak topology on X and is denoted σ(X,L).

13-1



13-2 13. THE DUAL OF AN LCS

On the other hand, given an LCS, we can think of X as a collection of linear functionals
on X?, associating to x ∈ X the map

` 7→ 〈x, `〉 .

The X-weak topology on X?, σ(X?, X), is also called the weak? toplogy. It is generated by
the family of seminorms

px(`) = |〈x, `〉| .

Theorem 13.2. If X is an LCS then (X?, σ(X?, X))? = X.

Remark. Recall that σ(X,X?) is the given LCS topology onX so we also have (Xσ(X,X?))? =
X?. Thus for any LCS (X?)? = X, provided we topologize X? with the weak? toplogy. If X
is a Banach space we also have a norm topology on X?, which is substantially stronger than
the weak? topology and with respect to which this identity may not hold. For instance,

(1) As Banach spaces c?0 = `1 and `?1 = `∞ and `?∞, which includes Banach limits, is
strictly larger than `1.

(2) As LCS spaces c?0 = `1 and (`1, σ(`1, c0)? = c0, etc.

The moral of the story is topology matters.

The following theorem is useful for determining if a linear functional is continuous.

Theorem 13.3. Let X be a LCS generated by a family of semi-norms S. Then a linear
functional ` ∈ X ′ if and only if there is a constant C > 0 and a finite collection p1, . . . , pn ∈ S
such that

|`(x)| ≤ C

n∑
j=1

pj(x) ∀x ∈ X.

Proof. (⇒) If ` is continuous then U = `−1(−1, 1) an open, convex, symmetric neigh-
borhood of the origin in X. By virtue of the fact that S generates the topology on X, since
U is open we have

n⋂
j=1

{x : pj(x) < ε} ⊂ U

for some finite collection p1, . . . , pn. Thus,

V = {x :
n∑
j=1

pj(x) < ε} ⊂ U.

Now, given x let t = 2
ε

∑n
j=1 pj(x). Then

n∑
j=1

pj(t
−1x) =

ε

2
,

so t−1x ∈ V ⊂ U . Thus∣∣`(t−1x)
∣∣ < 1 =

∑n
j=1 pj(x)∑n
j=1 pj(x)

=
2

ε

n∑
j=1

pj(t
−1x).

Multiplying through by t we get the desired bound with C = 2/ε.
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(⇐) Since ` is linear, it suffices to show that ` is continuous at 0. That is we must show
that `−1(−ε, ε) contains an open set containing the origin for each ε > 0. But clearly

{x : C

n∑
j=1

pj(x) < ε} ⊂ `−1(−ε, ε).

�





LECTURE 14

Spaces of distributions

Tempered Distributions

The dual of S(Rd) denoted S?(Rd) is the space of tempered distributions. Here are some
examples:

(1) S(Rd) ⊂ S?(Rd) where we associate to a function φ ∈ S(Rd) the distribution

ψ 7→ 〈ψ, φ〉 =

∫
Rd
ψ(x)φ(x)dx.

(2) More generally, a function F ∈ L1
loc(Rd) that is polynomially bounded in the sense

that p(x)−1F (x) ∈ L1(Rd) for some positive polynomial p > 0 may be considered as
a tempered distribution

ψ 7→ 〈psi, F 〉 =

∫
Rd
ψ(x)F (x)dx.

(3) Similarly, any polynomially bounded Borel measure µ, with∫
p(x)−1d|µ|(x) < ∞.

is a tempered distribution:

〈ψ, µ〉 =

∫
Rd
ψ(x)dµ(x).

To go further we need the following generalization of Theorem 13.3 from the last lecture:

Theorem 14.1. Let X, Y be a LCSs generated by a families of semi-norms S, T respec-
tively. Then a linear map T : X → Y is continuous if and only if for any semi-norm q ∈ S
there is a constant C > 0 and a finite collection p1, . . . , pn ∈ S such that

q(Tx) ≤ C
n∑
j=1

pj(x) ∀x ∈ X.

Corollary 14.2. For each j = 1, . . . , d, differentiation ∂j is a continuous map from
S → S.

Now we define ∂j : S? → S?. Note that

〈∂jψ, F 〉 = −〈ψ, ∂jF 〉 ,
whenever F is a C1 function of polynomial growth. Thus define for arbitrary ` ∈ S?:

〈ψ, ∂j`〉 = −〈∂j, `〉 .

Proposition 14.3. So defined, ∂j : S? → S? is a continuous map.

Proof. Exercise �
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Thus we have the following generalization of the above examples:

• Let α ∈ N d be a multi-index and let F be a polynomial L1 bounded function. Then
DαF is a tempered distribution:

〈ψ,DαF 〉 = (−1)α 〈Dαψ, F 〉 = = (−1)α
∫

Rd
Dαψ(x)F (x)dx.

Theorem 14.4 (Structure Theorem for Tempered Distributions). Let ` ∈ S(Rd) be a
tempered distribution. Then there is a polynomially bounded continuous function g and a
multi-index α ∈ Nd such that ` = Dαg.

For the proof see Reed and Simon, Ch. V.
For example, we now understand in a precise sense the identity

δ(x) =
d2

dx2
|x|.

More generally, in d = 2, we have the identity

δ(x) =
1

2π
∆ ln |x|.

This can be verified as follows. Note that ∆ ln |x| = 0 if x 6= 0. Thus

〈φ,∆ ln |x|〉 = 0 if φ(x) = 0 for |x| < ε.

Let h be a compactly supported function that is 1 in the neighborhood of the origin, then
〈φ− hφ,∆ ln |x|〉 = 0. Thus it suffices to suppose φ ∈ C∞c (Rd). For such φ

〈φ,∆ ln |x|〉 =

∫
|x|<M

∆φ(x) ln |x|dx = lim
ε↓0

∫
ε<|x|<M

∆φ(x) ln |x|dx,

since ln |x| is locally integrable. Now integrate by parts:∫
ε<|x|<M

∆φ(x) ln |x|dx = −
∫
ε<|x|<M

x

|x|2
· ∇φdx− ln ε

∫
|x|=ε

x

|x|
· ∇φ(x)dσ(x),

where in the first integral x
|x|2 is ∇ ln |x| and in the second integral − x

|x| is an outward facing

normal on {|x| = ε} and dσ(x) is the length measure on the circle. Continuing, we find that∫
ε<|x|<M

∆φ(x) ln |x|dx = =
1

ε

∫
|x|=ε

φ(x)dσ(x)−O(ε ln ε) → πφ(0).

Remark. In a similar fashion, in dimension d ≥ 3,

δ(x) = −∆cd|x|2−d,

with c−1
d = (d− 2)× area of the unit sphere {|x| = 1 : x ∈ Rd}.

Other spaces of distributions

Consider the scale of spaces

C∞c (Rd) ⊂ S(Rd) ⊂ C∞0 (Rd) ⊂ C∞(Rd).

Each has a natural LCS topology such that it is a complete space. The middle two are
Fréchet spaces and we have discussed their topologies already.
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On C∞c (Rd) we put the inductive limit topology as follows. For each n, let Ωn =
(−2n, 2n)d. The space Xn = C∞0 (Ωn) is a Fréchet space generated by the seminorms

pn,α(u) = sup
x∈ωn
|Dαu(x)| . (?)

Note that Xn ⊂ Xn+1, the embedding is continuous, and Xn is a closed subspace of Xn+1.
Put of C∞c (Rd) = X = ∪nXn the LCS topology which has the following convex neighborhood
base at the origin

C = {U ⊂ X : U is convex, symmetric, all points of U are interior, and U∩Xn is open for each n}.

Theorem 14.5. With this topology C∞c (Rd) is a LCS and is complete. The topology does
not depend on the choice of sets Ωn and a sequence un ∈ C∞c (Rd) converges if and only if
there is N such that un ∈ XN for all n and un converges in XN .

For the proof see Reed and Simon.
A distribution is an element of D?(Rd) = (C∞c (Rd))?. Since any tempered distribution T

acts on C∞c (Rd) and furthermore if 〈φ, T 〉 = 0 for all φ in C∞c then T = 0 (note that C∞c (Rd)
is dense in S), we have the embedding S? ⊂ D. Distributions in D need not be bounded at

∞ – any locally integrable function, like eee|x|
2

is a distribution. Also, the structure theorem
doesn’t hold in this context, however we have

Theorem 14.6. Let T be a distribution in D(Rd) then there is a sequence fα of continuous
functions, indexed by multi-indices, such that

T =
∑
α

Dαfα,

where for any u ∈ C∞c (Rd) only finitely many terms contribute to the sum

〈u, T 〉 =
∑
α

〈u,Dαfα〉 .

Roughly speaking, the order of the distribution can become unbounded at ∞.
Likewise we may put a topology on C∞(Rd) given by uniform convergence on compact

subsets. That is generated by the family of semi-norms (?), where now u need not have
compact support. This makes E(Rd) = C∞(Rd) into a Fréchet space. Let us denote it’s dual
by E?. We have the inclusions

E? ⊂ D?0 ⊂ S? ⊂ D?,
where D?0 is the dual of C∞0 (Rd). Distributions in E? have compact support, where

Definition 14.1. A distribution vanishes on an open set U ⊂ Rd if 〈φ, T 〉 = 0 whenever
φ has compact support in U . The support of a distribution is the smallest closed set F such
that T vanishes on Rd \ F .

Distributions in D0 are “bounded,” in the sense that they may be written as finite
sums of derivatives of finite measures. Distributions in S are “unbounded at ∞,” but only
polynomially so.





LECTURE 15

Applications: solving some PDE’s

The Poisson equation

The electric potential φ produced by a charge distribution ρ is known to satisfy the
Poisson equation:

−∆φ(x) = ρ(x), x ∈ R3

with the permitivity of space set = 1. Let us use the fact that

−∆
1

4π
|x|−1 = δ(x)

to solve this equation. We need the following notion.

Definition 15.1. Given two functions φ, ψ the convolution of φ and ψ is

φ ∗ ψ(x) =

∫
Rd
φ(x− y)ψ(y)dy,

whenever the integral is defined.

Proposition 15.1. The convolution product is abelian, φ∗ψ = ψ∗φ and is a continuous
map of L1 × L1 → L1, S × S → S, and D ×D → D.

Proof. Exercise. �

Theorem 15.2 (Young’s Inequality). Convolution is a continuous map from Lp×Lq →
Lr with 1/p+ 1/q = 1 + 1/r, 1 ≤ p, q, r ≤ ∞.

Proof. Let f ∈ Lr′ , 1/r′ + 1/r = 1. Then

|
∫
f(x)φ ∗ ψ(x)dx| ≤

∫ ∫
|f(x)φ(x− y)ψ(y)|dxdy.

Write the integrand as α(x, y)β(x, y)γ(x, y) with

α(x, y) = |f(x)|
r′
p′ |φ(x− y)|

q
p′

β(x, y) = |φ(x− y)|
q
r |ψ(y)|

p
r

γ(x, y) = |f(x)|
r′
q′ |ψ(y)|

p
q′

and 1/p+ 1/p′ = 1, 1/q + 1/q′ = 1. Note that 1/p′ + 1/q′ = 1/r′ = 1− 1/r. So, by Holder,∫ ∫
|f(x)φ(x− y)ψ(y)|dxdy ≤

[∫ ∫
|f(x)|r′ |φ(x− y)|qdxdy

] 1
p′

×
[∫ ∫

|φ(x− y)|q|ψ(y)|pdxdy

] 1
r
[∫ ∫

|f(x)|r′|ψ(y)|pdxdy

] 1
q′

= ‖f‖
r′
p′+

r′
q′

r′ ‖φ‖
q
p′+

q
r

q ‖ψ‖
p
r

+ p
q′

p .

15-1



15-2 15. APPLICATIONS: SOLVING SOME PDE’S

�

Now note that if φ ∈ C∞ and f is integrable and compactly supported, say, then φ ∗ f
is C∞. Indeed

∂j(φ ∗ f) = (∂jφ) ∗ f.
Likewise, if φ ∈ S and f is integrable with compact support — or more generally polynomial
decay at ∞, so p(x)f ∈ L1 for any polynomial p — then φ ∗ f ∈ S. If also ψ ∈ S then

〈ψ, φ ∗ f〉 =
〈
ψ ∗ f̃ , φ

〉
,

where
f̃(x) = f(−x).

Thus we define the convolution T ∗ f of a f , a compactly supported integrable function, and
a distribution T to be the distribution

〈ψ, T ∗ f〉 =
〈
ψ ∗ f̃ , T

〉
.

Theorem 15.3. If f ∈ L1 has compact support and T is a tempered distribution, then
T ∗ f ∈ S? is a tempered distribution, and if T ∈ L1

loc ∩ S∗ then T ∗ f ∈ L1
loc as well and

〈ψ, T ∗ f〉 =

∫
Rd×Rd

ψ(x)T (x− y)f(y)dxdy.

The map φ, T 7→ T ∗ φ is a continuous map of S × S? → C∞ ∩ S?.

Proof. The first two statements are clear. To show that T ∗φ is C∞ if φ ∈ S, note that
this follows if T is a function since

∂j

∫
φ(x− y)T (y)dy =

∫
∂jφ(x− y)T (y).

More generally, we may write a general distribution as Dαg with g continuous, and integrate
by parts to see that

T ∗ φ(x) =

∫
Dαφ(x− y)g(y)dy.

Continuity of the map is easy. �

Now, let T (x) = 1
4π
|x|−1. This is a locally integrable function, so if ρ ∈ L1

loc we have

φ(x) =
1

4π

∫
1

|x− y|
ρ(y)dy

as a (weak) solution of the Poisson equation. It is not the unique solution since we can add
to it any harmonic function U which satisfies ∆U = 0. For example, U(x) = x1 is harmonic.
So is U(x) = x1x2. In fact, one can show that any Harmonic tempered distribution is a
polynomial. (The easy way to do this is to use the Fourier Transform.)

More generally we have the following theorem due to Weyl

Theorem 15.4 (Weyl). Let T be a distribution that satisfies ∆T = 0 on an open set
D ∈ Rn, so 〈∆φ, T 〉 = 0 for φ ∈ C∞c (D). Then T is a C∞ function in D: there is
g ∈ C∞(D) such that 〈φ, T 〉 = 〈φ, g〉 for φ ∈ C∞c (D).

For the proof, see appendix B.
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The Dirichlet problem

Reading: §7.2 of Lax
Suppose we want to solve Poisson’s equation for φ that vanishes outside an open set

D ⊂ Rd containing the support of ρ. That is{
∆φ(x) = ρ(x) x ∈ D
φ(x) = 0 x 6∈ D.

It is useful to use Hilbert space methods. Let us set up the inner products

〈f, g〉0 =

∫
D

f(x)g(x)dx and 〈f, g〉1 =

∫
D

d∑
j=1

∂jf(x)∂jg(x)dx.

Take these over C∞c (D), which is incomplete but completes to L2(D) with respect to the
first and to a Sobolev space in the second.

Lemma 16.1. For any f ∈ C∞c (D)

‖f‖0 ≤
diam(D)√

d
‖f‖1

where diam(D) = supx,y∈D |x− y| is the width of D.

Proof. This is a calculus exercise. Extend f to be identically 0 outside D. Note that

f(x) =

∫ x1

x
(0)
1

∂1f(y, x2, . . . , xd)dy,

where x(0) = (x
(0)
1 , x2, . . . , xd) ∈ ∂D. Thus by Cauchy-Schwarz,

f(x)2 ≤ diam(D)

∫
R
∂1f(y, x2, . . . , xd)dy.

Integrating over x ∈ D now gives

‖f‖2
0 ≤ diam(D)2 ‖∂1f‖2

0 .

Similarly,
‖f‖2

0 ≤ diam(D)2 ‖∂jf‖2
0 .

Averaging these results gives the Lemma. �

Let H
(0)
1 denote the completion of C∞0 (D) in the norm ‖·‖1. This is a Hilbert space.

Lemma 16.2. Every element f ∈ H(0)
1 may be identified with a locally integrable function

such that

(1) f(x) = 0 if x 6∈ D
(2) f ∈ L2(D)

16-1



16-2 16. THE DIRICHLET PROBLEM

(3) For j = 1, . . . , d, ∂jf (in the sense of distributions) is a locally integrable function
in L2(D).

Furthermore we have

〈f, g〉1 =
D∑
j=1

〈∂jf, ∂jg〉0

and
〈f, ∂jg〉0 = −〈∂jf, g〉

whenever f, g ∈ H(0)
1 .

Proof. The inequality ‖f‖0 ≤ const.. ‖f‖1 shows that any Cauchy sequence of function

in the ‖·‖1 norm is Cauchy in L2. So any sequence fn ∈ C∞c (D) which converges in the H
(0)
1

also converges in L2. Identify the limit f with the corresponding element of L2(D), extended
to be zero outside D. (1) and (2) follow.

To derive (3), note that for g ∈ C∞c
〈g, ∂jfn〉 = −〈∂jg, fn〉

by integration by parts. The r.h.s. converges to 〈∂jg, f〉 using Cauchy-Schwarz. On the other
hand, ∂jfn converges in the L2 norm to a function hj. We conclude that hj = ∂jf in the
sense of distributions, so ∂jf ∈ L2(D).

To show the formulas, note that they hold for elements of C∞c (D) and follow for the

f, g ∈ H(0)
1 by taking limits. �

Now, fix ρ ∈ L2(D). This function gives rise to a linear functional ` on H
(0)
1 ⊂ L2(D) by

`(u) = 〈u, f〉0 .
Since

|`(u)| ≤ ‖u‖0 ‖f‖0 ≤
diam(D)√

d
‖f‖0 ‖u‖1 ,

this is a bounded linear functional. By Riesz-Frechet there is an element φ ∈ H(0)
1 such that

〈u, ρ〉0 = 〈u, φ〉1 ,

for all u ∈ H(0)
1 . Specializing to u ∈ C∞c (D), we find that

f = −∆φ

in the sense of distributions.
In a similar way, we may write down a bilinear form

B(u, v) =

∫
D

{∑
i,j

Ai,j(x)∂iu(x)∂jv(x) + u(x)
∑
i

Fi(x)∂iv(x) +m(x)u(x)v(x)

}
dx.

Let us check the hypotheses of Lax-Milgram. Clearly B is bilinear and bounded. To estimate
B(u, u) from below, suppose that Ai,j(x) is pointwise positive definite, that is∑

i,j

Ai,j(x)λiλj ≥ σ(x)
∑
i

λ2
i .

Then

B(u, u) ≥
∫
D

{
σ(x) |∇u(x)|2 − |u(x)| |F(x)| |∇u(x)|+m(x)u(x)2

}
dx.
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Now suppose the quadratic function

σ(x)t2 − |F(x)| ts+m(x)s2 ≥ δ(t2 + s2),

uniformly in x, for some δ > 0. This amounts to the requirement that σ(x) > 0, m(x) > 0
and the discriminant

sup
x
|F(x)|2 − 4σ(x)m(x) < 0.

Then
B(u, u) ≥ δ(‖u‖2

1 + ‖u‖2
0) ≥ δ ‖u‖2

1 .

Thus, by Lax-Milgram given ρ ∈ L2(D) we may find φ ∈ H(0)
1 such that

〈v, ρ〉0 = B(v, φ) ∀v ∈ H(0)
1 .

Such φ is a distributional solution to the equation

−
∑
i,j

∂iAi,j(x)∂jφ(x) +
∑
i

Fi(x)∂iφ(x) +m(x)φ(x) = ρ(x), x ∈ D.

One might ask, in what sense do the elements of H
(0)
1 vanish outside D? The complete

answer to this question involves the theory of Sobolev spaces. An elementary answer is the
following:

Lemma 16.3. Let D be a hypercube [−L,L]d and let f ∈ H(0)
1 . Then

lim
δ→0

1

|{dist(x, ∂D) < δ}|

∫
dist(x,∂D)<δ

|f(x)| = 0.

Remark. | · | denotes Lebesgue measure, so |{dist(x, ∂D) < δ}| = O(δ),

Proof. The set of points within distance δ of ∂D is a union of slabs such as S = {x ∈
D : −L < x1 < −L+ δ}. Let f ∈ C∞c (D) and consider the integral of |f(x)| over this slab.
Integrating by parts, we have∫

S

|f(x)|dx =

∫
S

∂1|f(x)|(−L+ δ − x1)dx,

since f vanishes on the boundary. Now ∂1|f(x)| ≤ |∂1f(x)|. Thus,∫
S

|f(x)|dx ≤
∫
S

|∂1f(x)|(−L+ δ − x1)dx ≤ δ|S|
1
2 ‖f‖1 ≤ C ‖f‖1 δ

3
2 ,

since |S| = O(δ). Adding up the contributions from all slabs we get∫
{dist(x,∂D)<δ}

|f(x)|dx ≤ C ‖f‖1 δ
3
2 .

Taking limits, this estimate follows, with constant C independent of f , for f ∈ H(0)
1 . Since

|dist(x, ∂D) < δ| ≥ cδ the result follows. �

Remark. We were a bit wasteful. We could have averaged over just Σδ = {dist(x,Σ) <
δ} with Σ a piece of the boundary with codimension 2. In that case |Σδ| ' δ2 and∫

Σδ

|f(x)|dx ≤ Cδ2

(∫
Σδ

|∇f(x)|2dx

) 1
2

.

The integral on the r.h.s. goes to zero, so the average of |f | vanishes also on codimension 2
sets.
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Weak Convergence and Weak Topology





LECTURE 17

Dual of a Banach space

Reading: §8.2 -8.3 of Lax.
Recall that the dual of a Banach space X is the space X ′ of bounded linear functionals

on X. Recall that we put a norm topology on X ′ by defining

‖`‖ = supx 6= 0
|`(x)|
‖x‖

.

Likewise, we have the following dual characterization of the norm on X:

Theorem 17.1. For every x ∈ X we have

‖x‖ = max ` 6= 0, ` ∈ X ′ |`(x)|
‖`‖

.

Proof. Since ‖`‖ ‖y‖ ≥ |`(y)| the l.h.s. is no smaller than the r.h.s. Thus we need only
produce an ` such that |`(x)| = ‖x‖ ‖`‖. Define ` first on the one dimensional subspace
span{x} by `(tx) = t ‖x‖. Since this functional is norm bounded by 1 on this subspace it
has an extension (by Hahn-Banach) to the whole space with this property. �

We also have the weak∗ topology on X ′, the weakest LCS topology such that all elements
of X are continuous functionals on X ′. Recall that (X ′,wk∗)∗ = X. One might wonder if
(X ′)′ = X as Banach spaces. In fact this does not hold in general.

Definition 17.1. A Banach space is called reflexive if (X ′)′ = X. That is if every
bounded linear functional on X ′ is of the form ` 7→ `(x) for some x ∈ X.

Many important spaces are reflexive, but not all. For instance:

Theorem 17.2. c′0 = `1, `′1 = `∞, and `′∞ ) `1.

Proof. Let ` be a linear functional on c0. Evaluating ` on the sequence ek(n) = 1 if
k = n and 0 otherwise produces a sequence

b(n) = `(en).

If a ∈ c0 then

a = lim
n→∞

n∑
j=1

a(j)ej,

so by linearity and continuity

`(a) = lim
n→∞

n∑
j=1

a(j)b(j).

17-1
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That is for any a ∈ C0 the sequence ab is summable and

`(a) =
∞∑
j=1

a(j)b(j).

To see that b ∈ `1, take an(j) = e−i arg b(j) if j ≤ n and 0 otherwise. Thus
n∑
j=1

|b(j)| = `(an) ≤ ‖`‖ .

It follows that b ∈ `1. (Conversely, it is clear that any b ∈ `1 gives a linear functional on
c0.)

The same idea works to prove `′1 = `∞. Finally, it is clear that `1 ⊂ `′∞, however no
Banach limit such as defined in the third lecture can be written as a scalar product with
something in `1. �

However,

Theorem 17.3. Every Hilbert space is reflexive.

Proof. In this case X ′ = X by Riesz-Fréchet. �

For Lp spaces we have.

Theorem 17.4. Let X,µ be a finite measure space. For 1 ≤ p < ∞ the dual of Lp(X)
is Lq(X) where 1

p
+ 1

q
= 1.

Remark. The result, but not the proof, extends to arbitrary measure spaces for 1 <
p <∞. If p = 1 (so q =∞) the result holds in σ-finite measure spaces.

Proof. The Hölder inequality shows that Lq(X) ↪→ Lp(X)′, via the pairing

〈f, g〉 =

∫
X

f(x)g(x)dµ(x), f ∈ Lp and g ∈: Lq.

Suppose now that ` is a linear functional on Lp(X). For each measurable set A we have
χA ∈ Lp(X). So

ν(A) = `(χA)

defines a finitely additive set function. In fact, it is countably additive since ` is continuous,
and if A1, A2, . . . are pairwise disjoint then

n∑
j=1

χAj → χ∪Aj in Lp

as one may readily show. Furthermore ν(A) = 0 if µ(A) = 0 since then χA = 0 in Lp. Thus
ν << µ and by Radon-Nikodym there is function g ∈ L1 such that

`(χA) = ν(A) =

∫
A

g(x)dµ(x) =

∫
X

χA(x)g(x)dµ(x).

By taking limits of simple functions we have

`(f) =

∫
A

f(x)g(x)dµ(x) (?)

whenever f ∈ L∞, using dominated convergence.
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It remains to show that g ∈ Lq for then (?) extends to all of Lp by density of L∞. To
this end, fix t > 0 and let

ft(x) =

{
|g(x)|q
g(x)

0 < |g(x)| < t

0 |g(x)| = 0 or |g(x)| ≥ t.

Clearly |ft(x)| ≤ tq−1 so ft ∈ L∞ ⊂ Lp. Thus∫
{|g(x)|<t}

|g(x)|qdµ(x) =

∫
ft(x)g(x)dµ(x) ≤ ‖`‖

[∫
|ft(x)|pdµ(x)

] 1
p

.

But |ft(x)|p = |g(x)|pq−p = |g(x)|q on {|g(x)| < t}. Thus[∫
{|g(x)|<t}

|g(x)|qdµ(x)

]1− 1
p

≤ ‖`‖

and the result follows. �

Corollary 17.5. Lp(X) is reflexive for 1 < p <∞.

This result also follows from

Theorem 17.6 (Milman 1938). Any uniformly convex Banach space is reflexive

In general L1 is not reflexive: (L1)′ = L∞ but L∞ contains linear functionals that are
not in L1. Notice where the proof breaks down. Given a linear functional ` on L∞ we can
define a set function

ν(A) = `(χA)

as above. It is certainly additive, and absolutely continuous since if µ(A) = 0 then χA = 0
in L∞. It is not, however, countably additive since

n∑
j=1

χAj 6→ χ∪Aj in L∞.

The inequality (L∞) 6= L1 also follows from:

Theorem 17.7. Let X be a Banach space over C. If X ′ is separable so is X.

Proof. Let {`n} be a countable dense subset of X ′. For each n there is xn ∈ X such
that

‖xn‖ = 1 and `n(xn) ≥ 1

2
‖`n‖ .

It suffices to show span{xn} is dense in X.
Suppose contrarily that span{xn} 6= X. Then there is a non-zero linear functional ` ∈ X ′

such that `(xn) = 0 for all n. We may assume that ‖`‖ = 1. However, we can find n such
that ‖`− `n‖ ≤ 1

4
, say. Thus ‖`n‖ ≥ 3

4
and

0 = `(xn) = `(xn)− `n(xn) + `n(xn) ≥ 1

2
‖`n‖ − ‖`− `n‖ ≥

1

8
.

Thus no such ` exists and we must have span{xn} = X. �





LECTURE 18

Riesz-Kakutani theorem

Theorem 18.1 (Riesz-Kakutani). Let Q be a compact Hausdorff space, C(Q) the space
of continuous real valued functions on Q with the max norm. Then C(Q)′ = M(Q) = set of
signed Borel measures of finite total variation.

That is to every bounded linear functional ` ∈ C(Q)′ is associated a unique Borel measure
m such that

`(f) =

∫
Q

fdm.

Furthermore the norm of ` is the total variation ‖`‖ =
∫
Q
|dm|.

Remark. i) A Borel measure is a measure on sets in the Borel σ-algebra which is the
smallest σ-algebra containing the open sets on Q. ii) The dual of C(Q; C) is the set of
complex Borel measures, m = mr + imi with mr,mi ∈ M(Q). iii) Compactness is crucial
here. (More on this later.)

Before proving this theorem, let us prove

Theorem 18.2. Given ` ∈ C(Q) there is a unique deomposition ` = `+ − `− with `±
positive linear functionals and ‖`‖ = `+(1) + `−(1).

Proof. Let C(Q)+ = set of non-negative functions in C(Q). For f ∈ C(Q)+ define

`+(f) = sup{`(h) : 0 ≤ h ≤ f}.
It is clear that `+(tf) = t`+(f) for t ≥ 0 and that `+(f) ≥ `(0) = 0 for f ∈ C(Q)+. Given
f , g in C(Q)+ their sum is also in C(Q)+. Clearly

`+(f + g) ≥ sup{`(h1) + `(h2) : 0 ≤ h1 ≤ f and 0 ≤ h2 ≤ g} = `+(f) + `+(g).

The opposite inequality clearly follows from the following result

Claim. Given f, g ∈ C(Q) and 0 ≤ h ≤ f+g we can write h = h1 +h2 with h1,2 ∈ C(Q),
0 ≤ h1 ≤ f and 0 ≤ h2 ≤ g.

Proof of Claim. Let h1 = min{f, h}. So h1 is continuous and 0 ≤ h1 ≤ f . Let
h2 = h− h1. Since h1 ≤ h, h2 ≥ 0. When h1 = f we have h2 ≤ f + g− f = g. On the other
hand if h1 = h we have h2 = 0 so h2 ≤ g. �

Thus `+(tf + sg) = t`+(f) + s`+(g) whenever t, s ≥ 0 and f, g ∈ C(Q)+. Define `+ on
all of C(Q) by

`+(f) = `+(f+)− `+(f−), with f+ = max{f, 0} and f− = min{f, 0}.
It is not hard to see that `+ is linear. Now set `− = `+ − ` and note that

`−(f) = sup{`(h)− `(f) : 0 ≤ h ≤ f} = sup{`(k) : −f ≤ k ≤ 0} ≥ 0,

for f ∈ C(Q)+.
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To prove ‖`‖ = `+(1) + `−(1) note first that ‖`±‖ = `±(1) since these are positive linear
functionals. Thus, ‖`‖ ≤ ‖`+‖+ ‖`−‖ = `+(1) + `−(1). On the other hand by the definition
of `+ and the corresponding inequality for `− we have

`+(1) + `−(1) = sup{`(h) : 0 ≤ h ≤ 1}+ sup{`(k) : −1 ≤ k ≤ 0}
= sup{`(g) : −1 ≤ g ≤ 1} ≤ ‖`‖ . �

We are now ready to prove the Riesz-Kakutani Theorem. By the splitting of a linear
functional into positive and negative parts, it suffices to show

Theorem 18.3 (Riesz-Kakutani). Let ` be a positive linear functional on C(Q) with Q
a compact Hausdorff space. Then there is a unique positive Borel measure m on Q such that
`(f) =

∫
Q
f(x)dm(x) and ‖`‖ = m(Q). Conversely, any positive Borel measure m gives a

positive linear functional on C(Q) via 〈f,m〉 =
∫
Q
f(x)dm(x).

Proof. First, it is clear that any positive Borel measure m gives rise to a positive linear
functional by `(f) =

∫
Q
f(x)dm(x). (Continuous functions are Borel measurable.) Since

the functional is positive ‖`‖ = `(1) = m(Q).
It remains to show that every positive linear functional is of this form. So let ` ∈ C(Q)′ be

given. We would like to define m(S) = `(χS), for S a measurable set. However, χS 6∈ C(Q)
(unless S is both open and closed, so a union of connected components). Thus we do the
next best thing: given an open set U we take

m(U) = sup{`(f) : f ≺ U},
where, f ≺ U indicates that f ∈ C(Q), supp f ⊂ U and 0 ≤ f ≤ 1.

Claim. Let U1, U2 ⊂ Q be a disjoint pair of open sets. Then m(U1∪U2) = m(U1)+m(U2).

Proof of claim. Note that given fj ≺ Uj, we have f1 + f2 ≺ U1 ∪ U2 and conversely
given f ≺ U1 ∪ U2, we have fχUj ≺ Uj. The identity follows. �

Thus m is finitely additive on open sets. So far the construction works on an arbitrary
compact space, but the open sets do not form a σ-algebra. A first step is to define m on
closed sets F by

m(F ) = m(Q)−m(F ) = inf{`(f) : F ≺ f},
where F ≺ f if 0 ≤ f ≤ 1 and f(x) = 1 on F .

To proceed we need the following result which uses the assumption that Q is a compact
Hausdorff space:

Claim. If F ⊂ U , F closed and U open, then

m(F ) = inf{`(f) : F ≺ f ≺ U} ≤ sup{`(f) : F ≺ f ≺ U} = m(U).

Proof of claim. It is clear that

m(F ) ≤ inf{`(f) : F ≺ f ≺ U} ≤ sup{`(f) : F ≺ f ≺ U} ≤ m(U).

To obtain equality on the two ends, we use Urysohn’s lemma, valid here since a compact
Hausdorff space is normal (disjoint closed sets may be separated by open sets):

Theorem 18.4 (Uryshohn’s Lemma). Given two disjoint closed sets F0, F1 ⊂ Q there is
a continuous function f : Q→ [0, 1] such that f ≡ 0 on F0 and f ≡ 1 on F1.
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Given f1 ≺ U , let F1 = F ∪ supp f1, and let V be open with F1 ⊂ V ⊂ F ⊂ U — such
V exists because Q is normal. Now let F0 = V c. Then f ≡ j on Fj, j = 0, 1 clearly satisfies
f1 ≤ f and F ≺ f ≺ U . We conclude that

sup{`(f) : F ≺ f ≺ U} = sup{`(f) : f ≺ U} = m(U).

Similarly given f1 � F , let F1 = F and F0 = U c. Pick f2 ∈ C(Q) with F ≺ f2 ≺ U and
set f = f1f2. Clearly F ≺ f ≺ U and f ≤ f1. Thus `(f) ≤ `(f1) so

inf{`(f) : F ≺ f ≺ U} = inf{`(f) : F ≺ f}. �

It now follows that

Claim. If F is closed then m(F ) = inf{m(U) : F ⊂ U and U open}.
If U is open then m(U) = sup{m(F ) : F ⊂ U and F closed}.

Proof of claim. Clearly m(F ) ≤ inf{m(U) : F ⊂ U}. To prove the converse, note
that given ε > 0 there is f � F such that `(f) ≤ m(F ) + ε. Let U = {x : f(x) >
1 − ε}. Note that g ≺ U =⇒ g ≤ 1

1−εf so `(g) ≤ 1
1−ε`(f). Thus m(U) ≤ 1

1−ε`(f). Thus
(1− ε)m(U) ≤ m(F ) + ε. It follows that inf{m(U) : F ⊂ U} ≤ m(F ).

The opposite identity, m(U) = sup{m(F )}, follows by taking complements. �

Now given arbitrary S ⊂ Q define

m+(S) = inf{m(U) : S ⊂ U and U open},
m−(S) = sup{m(F ) : S ⊃ F and F closed}.

Clearly m−(S) ≤ m+(S). If these two numbers are equal define

m(S) = m±(S) if m+(S) = m−(S).

Claim. The collection Σ = {S ⊂ Q : m+(S) = m−(s)} is a σ-algebra containing all
Borel sets and m defines a countably additive measure on this σ-algebra.

Proof of Claim. Clearly Σ contains all closed and all open sets. Thus once we show
it is a σ-algebra it is immediate that it contains all Borell sets. Clearly S ∈ Σ =⇒ Sc ∈ Σ.
Thus we need only show that Σ is closed under countable unions. This is left as an exercise
as is countable additivity of m. �

To complete the proof, we must show that
∫
fdm = `(f). It suffices to prove this for f

with 0 ≤ f ≤ 1. Note that∫
Q

fdm =

∫ 1

0

m{x : f(x) ≥ t}dt =

∫ 1

0

m{x : f(x) > t}dt.

Let us show that
∫
fdm ≤ `(f). Note that∫

Q

fdm ≤
n∑
j=1

1

n
m

{
x : f(x) ≥ j − 1

n

}
.

Let gj;n be functions with
{
f(x) ≥ j−1

n

}
≺ gj;n ≺

{
f(x) > j−2

n

}
. Such functions exist by

Urysohn’s Lemma. So ∫
Q

fdm ≤
n∑
j=1

1

n
`(gj;n) = `(

n∑
j=1

1

n
gj;n).
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Now for every x ∈ Q
n∑
j=1

1

n
gj;n(x) =

bnf(x)c+1∑
j=1

1

n
+O(

1

n
) =

1

n
bnf(x)c+O(

1

n
).

We conclude that ∣∣∣∣∣
n∑
j=1

1

n
gj;n(x)− f(x)

∣∣∣∣∣ = O(
1

n
),

so

`(
n∑
j=1

1

n
gj;n) −→ `(f),

and
∫
fdm ≤ `(f).

To show the reverse inequality, note that∫
Q

fdm ≥
n∑
j=1

m

{
f(x) >

j

n

}
.

Thus, ∫
Q

fdm ≥ `(
n∑
j=1

1

n
hj;n),

with {f(x) ≥ j+1
n
} ≺ hj;n ≺ {f(x) > j

n
}. Then

n∑
j=1

1

n
hj;n(x) =

bnf(x)c−1∑
j=1

1

n
+O(

1

n
) =

1

n
bnf(x)c+O(

1

n
).

Again
∑

j hj;n → f , so
∫
fdm ≥ `(f), completing the proof. �

A word about the non-compact case. Suppose X is a locally compact Hausdorff space,
so X is a Hausdorff space such that every point is contained in an open set with compact
closure. Then we can consider several spaces Cc(X) ⊂ C0(X) ⊂ Cb(X) ⊂ C(X) where
Cb(X) = {bounded continuous functions}. The middle two are Banach spaces in the sup
norm. The first and last are LCS spaces: Cc(X) has an inductive limit topology obtained
from writing it as Cc(X) = ∪UC0(U) where the union is over open sets U with compact
closure, C(X) has a topology generated by the seminorms pK(f) = supx∈K |f(x)| for compact
K. Regarding the duals of these spaces, we have

Cc(X)′ = M(X) = {Borel measures m such that |m|(K) <∞ for any compact K}.
C0(X)′ = M0(X) = {finite Borel measures on X}.

Cb(X)′ = {finite Borel measures on the Stone-C̆ech compactification of X}.
C(X)′ = {compactly supported Borel measures}.
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Weak convergence

Reading: §10.1 and 10.2 of Lax.
We have already defined weak topologies in the general context of LCS spaces. Let us

now look at them in the special case of Banach spaces. Consider a Banach space X and
it’s Banach space dual X ′. So X ′ is a collection of linear functionals on X. The weakest
topology on X so that every element of X ′ is continuous is called the weak topology on X,
denoted σ(X,X ′).

A sequence {xn} in X converges weakly to x — converges in the weak topology — if

`(xn) → `(x) for every ` ∈ X ′.
Sometimes this is denoted

xn ⇀ x,

or
wk− lim

n→∞
xn = x.

This notion is weaker than strong convergence, which is in norm:

‖xn − x‖ → 0, or xn → x.

That is more sequences converge weakly than converge strongly. For instance

χ[n,n+1] ⇀ 0 in Lp(R), 1 < p <∞,
but ∥∥χ[n,n+1]

∥∥
Lp

= 1.

(Note that χ[n,n+1] does not converge weakly in L1.)

Proposition 19.1. Let {xn} be an orthonormal sequence in a Hilbert space H. Then
xn ⇀ 0.

Remark. Since ‖xn‖ = 1, xn does not converge strongly to 0.

Proof. Fix y ∈ H. By Bessel’s inequality∑
n

| 〈y, xn〉 |2 ≤ ‖y‖2 ,

we see that 〈y, xn〉 → 0. By the Riesz theorem on linear functionals on a Hilbet space,
xn ⇀ 0. �

Theorem 19.2. Suppose {xn} ∈ X, a Banach space, satisfies

(1) xn are uniformly bounded: supn ‖xn‖ <∞.
(2) lim `(xn) = `(x) for ` ∈ Y ′ with Y ′ dense in X ′.

Then xn ⇀ x.

Proof. This is an easy approximation argument and is left as an exercise. �
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The interesting thing is that the converse is true: weakly convergent sequences are
uniformly bounded. To prove this we will use

Theorem 19.3 (Principle of Uniform Boundedness for a complete metric space). Let X
be a complete metric space and F a collection of real valued continuous functions on X. If
F is bounded at each point x ∈ X,

|f(x)| ≤M(x) <∞ for all f ∈ F ,

then there is an open set U ⊂ X and a constant M <∞ such that

|f(x)| ≤M for all x ∈ U and f ∈ F .

Proof. This result follows from the Baire Category Theorem of topology:

Theorem 19.4 (Baire Category Theorem). A complete metric space is not the union of
a countable number of nowhere dense sets.

Remark. Recall that the interior of a set S is the largest open set contained in S, that
is

intS = So =
⋃
{U ⊂ S : U open},

and that a set S is nowhere dense if it’s closure S has empty interior. Thus a closed set is
nowhere dense if S ⊂ Sc. For the proof see Reed and Simon Chapter III or any book on
point set topology.

To prove the PUB, note that by assumption

X =
⋃
n

{x : |f(x)| ≤ n for all f ∈ F}.

Thus, at least one of the (closed) sets {x : |f(x)| ≤ n ∀f ∈ F} has non-empty interior,
which is to say it contains an open set U . This is the open set claimed in the theorem. �

Suppose X is a Banach space and each function f ∈ F is sub-additive (f(x + y) ≤
f(x) + f(y)) and absolutely homogeneous (f(ax) = |a|f(x)). For instance each f could be
of the form f(x) = |`(x)| for some linear functional. Then

Theorem 19.5 (Principle of Uniform Boundedness for sub-additive functionals). Let X
be a Banach space and let F be a collection of real-valued continuous, sub-additive, absolutely
homogeneous functions on X. Suppose for each x ∈ X, |f(x)| ≤ M(x) < ∞ for all f ∈ F .
Then the function f ∈ F are uniformly bounded in the sense that there is c <∞ such that

|f(x)|| ≤ c ‖x‖ for all x ∈ X and f ∈ F .

Proof. Clearly the hypotheses of the PUB for metric spaces applies. Let U be the open
set claimed and let x0 ∈ U . Since U is open there is ε > 0 such that ‖y‖ < ε =⇒ x0 +y ∈ U .
Now consider y with ‖y‖ < ε. We have, for f ∈ F ,

f(y) = f(y + x0 − x0) ≤ f(y + x0) + f(x0) ≤ 2M.

Thus for arbitrary x ∈ X and f ∈ F ,

f(x) =
2 ‖x‖
ε

f(
ε

2 ‖x‖
x) ≤ 4M

ε
‖x‖ . �



19. WEAK CONVERGENCE 19-3

Corollary 19.6. Let X be a Banach space and let L be a collection of bounded linear
functionals that is pointwise bounded, so `(x) ≤M(x) for all ` ∈ L, then there is a constant
c <∞ such that

‖`‖ ≤ c for all ` ∈ L.

Corollary 19.7. Let X be a Banach space and let S ⊂ X be a weakly pre-compact
subset of X. Then there is a constant c <∞ such that

‖x‖ ≤ c for all x ∈ S.
In particular, any weakly convergent sequence is norm bounded.

Remark. Recall that a set S is pre-compact if S is compact. Thus any sequence in a
pre-compact set has a convergent subsequence, but the limit may lie outside S.

Proof. Think of points of X as functions on X ′. Since S is weakly compact `(x) must be
bounded for each ` as x ranges over S (otherwise we could find a weakly divergent sequence).
By the PUB there is a constant c such that ‖x‖ ≤ c for all x ∈ S. �

A function f : X → R, X a topological space, is called lower semi-continuous if {x :
f(x) > t} is open for each t ∈ R. Such a function satisfies f(x) ≤ lim infn f(xn) for any
convergent sequence xn → x. (Note that for each ε > 0 the set {y : f(y) > f(x) − ε} is
open and thus eventually contains xn so lim inf xn ≥ f(x)− ε.)

Theorem 19.8 (Weak lower semicontinuity of the norm). Let X be a Banach space. The
norm ‖·‖ is weakly lower semicontinuous. In particular, if xn ⇀ x in X then

‖x‖ ≤ lim inf ‖xn‖ .

Remark. 1) This should remind you of Fatou’s lemma from measure theory. 2) We have
already seen that the norm is not continuous, since it may “jump down” in a limit.

Proof. Fix t ≥ 0. Let X ′1 denote the unit ball {` : ‖`‖ ≤ 1} in X ′. Note that ‖x‖ > t
if and only if there is a linear functional ` ∈ X ′1 with |`(x)| > t . Thus

{‖x‖ > t} = ∪`∈X′1 {x : `(x) > t}
is weakly open. �





LECTURE 20

Weak sequential compactness, weak∗ convergence and the weak?

topology

Definition 20.1. A subset C of a Banach space X is called weakly sequentially compact
if any sequence of pints in C has a weakly convergent subsequence, whose weak limit is in
C.

Recall that sequential compactness is, in general, a strictly weaker notion than compact-
ness. They are equivalent, however, in metric spaces. In the present context, X is metrizable
in the σ(X,X ′) topology if and only if X ′ is separable.

Proposition 20.1. A weakly sequentially compact set is bounded

Proof. Use the PUB. Details left as an exercise. �

Theorem 20.2. In a reflexive Banach space X the closed unit ball is weakly sequentially
compact.

Remark. We will see that the unit ball is, in fact, weakly compact in a reflexive Banach
space, and more generally in the dual of a Banach space. However, the proof of that result
is far less constructive than the following.

Proof. Let {yn} be a sequence of points in the unit ball. Let Y be the closed linear
span span{yn}. Since X is reflexive, it follows that Y is reflexive, since

Theorem 20.3 (Thm. 15 of Chapter 8 in Lax). Any closed subspace of a reflexive space
is reflexive.

Proof. See Lax. �

Since Y = Y ′′ is separable, it follows that Y ′ is separable. So Y ′ contains a dense
countable subset {mj}. Consider the array of scalars

ai,j = mi(yj).

The ith row is bounded by ‖mi‖. Starting with the first row we pick a subsequence y
j
(1)
k

so

that m1(y
j
(1)
k

) converges. Refine this subsequence again and again to produce subsequences

y
j
(n)
k

for each n so that m1(y
j
(n)
k

), . . . ,mn(y
j
(n)
k

) all converge. Now let

zn = y
j
(n)
n
.

Clearly mj(zn) converges as n→∞ for each j. By density of {mj} in Y ′ it follows that

lim
n→∞

m(zn) = y(m)

exists for each m ∈ Y ′. This limit is clearly a linear functional of m and since

‖m(zn)‖ ≤ ‖m‖ ‖zn‖ ≤ ‖m‖ ,
20-1
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the linear functional is bounded. Since Y is reflexive, we see that there is y ∈ Y such that
y(m) = m(y). Since the restriction of ` ∈ X ′ to Y gives an element of Y ′, we have zn ⇀ y
in X. �

We may also consider a weak topology on the dual X ′ of a Banach space. That is the
weak ∗ topology σ(X ′, X). A sequence un of linear functionals is said to be weak ∗ convergent
to u if

limun(x) = u(x) for all x ∈ X,
also denoted

wk∗− lim
n→∞

un = u.

Weak∗ convergence of measures is also known as vague convergence. If X is reflexive then
weak∗ convergence is the same as weak convergence, but in general the weak∗ topology is
strictly weaker than the weak topology since the latter makes all linear functionals in X ′′

continuous.

Theorem 20.4. A weak∗ convergent sequence un is uniformly bounded and

‖u‖ ≤ lim inf ‖un‖ ,
if u = wk∗− limun.

Proof. Exercise. �

Definition 20.2. A subset C of a dual Banach space X ′ is weak∗ sequentially compact
if every sequence of points in C has a weak∗ convergent subsequence with weak∗ limit in C.

Theorem 20.5 (Helly 1912). Let X be a separable Banach space. Then the closed unit
ball in X ′ is weak∗ sequentially compact.

Proof. Given un ∈ X ′ with ‖un‖ ≤ 1 and a countable dense subset {xn} of X, we can
use the diagonal process to select a subsequence vn of un so that

lim
n→∞

vn(xk)

exists for every xk. By density of {xk} this extends to all of X:

lim
n→∞

vn(x) = v(x)

for all x ∈ X. One readily verifies that v is linear and bounded, so it is the desired limit. �

In fact, more is true. The unit ball in X ′ is weak∗ compact, even if X is no separable:

Theorem 20.6 (Alaoglu). Let X ′ be the dual of a Banach space X. The unit ball of X ′

is wk∗ compact.

Proof. Let B be the unit ball in X ′. Let T be the (uncountable) product space:

T =
∏
x∈X

Ix, Ix = [−‖x‖ , ‖x‖].

By the Tychonov theorem T is compact in the product topology. To complete the proof, we
embed B as a closed subset of T .

The infinite product space T is the collection of all functions F : X → R such that
F (x) ∈ Ix for all x. Given ` ∈ B, |`(x)| ≤ ‖`‖ ‖x‖ ≤ ‖x‖ so `(x) ∈ Ix for every x. Thus
B ⊂ T .
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Now the product topology on T is just the weakest topology such that coordinate eval-
uation F 7→ F (x) is continuous for every x. The restriction of this topology to B is just the
wk∗ topology on B.

Thus we have embedded B as a subset of the compact space T . It suffices to show that
B is closed. For each x, y ∈ X and t ∈ R, let

Φx,y;t(F ) = F (x+ ty)− F (x)− F (y),

a continuous map of T into the field of scalars. Clearly B ⊂ Φ−1
x,y;t({0}) and Φ−1

x,y;({0}) is a
closed set. Thus

B ⊂
⋂
x,y,t

Φ−1
x,y;({0}),

so every element of B is linear. Since any F ∈ T is also bounded by ‖x‖, |F (x)| ≤ ‖x‖, we
conclude that B = B. �

Clearly Alaoglu’s theorem implies Helly’s theorem. However, the proof of Helly’s theorem
is much more useful. Often times what one really wants is to find a convergent sequence.
The proof Helly’s theorem gives you an idea how to construct it; Alaoglu’s theorem just tells
you it is there.

Corollary 20.7. The unit ball in a reflexive space is weakly compact.

Remark. In fact weak compactness of the unit ball is equivalent to reflexivity, a result
due to Eberlein (1947) and Smulyan (1940).

In particular, this result applies to any Hilbert space and to Lp, 1 < p < ∞. The unit
ball in L∞ is weak∗ compact since L∞ = (L1)′. The unit ball in L1 is not weakly compact.

Here is what happens in L1. Consider, for example, L1([0, 1]), and let

fn(x) = nχ[0, 1
n

](x).

So ‖fn‖L1 = 1 and for any continuous function g ∈ C([0, 1]) T
∫ 1

0
g(x)fn(x)dx→ g(0).T Thus

wk∗ lim fndx = δ(x)dx in M([0, 1]) but fn has no weak limit in L1. Of course, the sequence
fn has a weak∗ convergent subsequence in L∞([0, 1])′, which shows the existence of a linear
functional on L∞ that restricts to g 7→ g(0) for continuous functions g. (We could have used
the Hahn Banach theorem to get this.)

Here is another example. On L1([0,∞)) let

fn(x) =
1

n
χ[0,n](x).

Again ‖fn‖L1 = 1. As measures fndx ⇀ 0 in M0([0,∞)), that is∫ ∞
0

fn(x)g(x)dx −→ 0 g ∈ C0([0,∞)),

however, fn does not converge weakly to zero in L∞. Indeed for the constant function g ≡ 1,∫ ∞
0

fn(x)g(x) = 1.





LECTURE 21

An application: positive harmonic functions

Reading: §11.6 in Lax

Positive harmonic functions

We may apply weak∗ compactness to prove the following:

Theorem 21.1 (Herglotz). Let u be a function on the open unit disk D = {|z| < 1} such
that

(1) u(z) ≥ 0 for all z ∈ D
(2) u is harmonic in D, that is it satisfies the mean value property

u(z) =
1

πε2

∫
Dε(z)

u(w)dm(w),

for all z ∈ D and ε < 1 − |z|. Here m is Lebesgue measure on the disk and Dε(z)
is the disk of radius ε centered at z.

Then there is a unique finite, non-negative, Borel measure µ on ∂D = {|z| = 1} such that

u(z) =

∫
∂D

1− |z|2

|z − w|2
dµ(w). (?)

Conversely, any such function is a non-negative Harmonic function on the disk.

Remark. The theorem implies |u(z)| ≤ const./(1 − |z|), so non-negative harmonic
functions cannot blow up arbitrarily at ∂D. One might wonder if a similar theorem holds
for, say, real valued Harmonic functions. That is, given u Harmonic and real valued does
there exist a signed measure µ such that u is the Poisson integral of µ? A moment’s thought
shows that the answer is “No!”, for it is easy to construct a real valued harmonic function
which violates the estimate |u(z)| ≤ const./(1− |z|). For example, u(z) = Re 1/(1− z)2.

Proof. Note that u is continuous. To see this, first observe that the mean value property
implies that u is locally integrable. Next, observe that

u(z + h)− u(z) =
1

πε2

[∫
Dε(z+h)

u(w)dm(w)−
∫
Dε(z)

u(w)dm(w)

]
.

By dominated convergence the integral on the r.h.s. converges to zero as h converges to zero.
Since u is continuous, we may differentiate

πr2u(0) =

∫
Dr(0)

u(z)dm(z) =

∫ r

0

∫ 2π

0

u(seiθ)dθsds

with respect r and conclude that for every r

u(0) =
1

2π

∫ 2π

0

u(reiθ)dθ.
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Thus for each r ∈ (0, 1) the measure dµr(θ) = (2π)−1u(reiθ)dθ on the circle ∂D has mass
u(0). Think of these measures as elements of the dual to C(∂D). By Helly’s theorem, we
may find a weak∗ convergent subsequence µrn . That is, there is a Borel measure µ ∈ C(∂D)′

such that ∫
∂D

f(θ)dµ(θ) = lim
n→∞

1

2π

∫
∂D

f(θ)u(reiθ)dθ

for every f ∈ C(∂D).
To complete the proof, we will use the identity

u(z) =
1

2π

∫ 2π

0

r2 − |z|2

|reiθ − z|2
u(reiθ)dθ, (??)

valid for z ∈ Dr(0). Let us defer the proof for the moment and show how (??) implies the
representation (?). Fix z and let

fr,z(e
iθ) =

r2 − |z|2

|reiθ − z|2
.

It is easy to see that fr,z → fz uniformly as r → 1, where

fz(e
iθ) =

1− |z|2

|eiθ − z|2
.

Thus the weak∗ convergence µrn →
∫
·µ then implies

u(z) = lim
n

∫
∂D

frn;z(e
iθ)dµrn(θ) =

∫ 2π

0

fz(e
iθ)dµ(θ).

The identity (?) is a classical formula, which may be verified in a number of ways. One
of these is as follows. Let v(z) denote the integral on the r.h.s. It is easy to show that v is
harmonic in Dr(0) — for this it suffices to show that (|w|2 − |z|2)/|w − z|2 is harmonic in
D|w|(0) for fixed w. Furthermore, it is not too hard to show that

lim
s↑r

v(reiθ) = u(reiθ),

since for any continuous function f on the circle

1

2π
lim
s↑r

∫ 2π

0

r2 − s2

|reiθ − seiφ|2
f(eiφ)dφ = f(eiθ).

(Exercise: verify this formula.) Thus u(z)−v(z) is a harmonic function on Drn(0), continuous
up to the boundary and identically equal to zero there. It follows from the maximum
principle, applied to u− v and v − u, that u− v = 0 throughout. (The maximum principle
is a straightforward consequence of the mean value property and continuity.) �

Herglotz-Riesz Theorem

An important application of the above is the following:

Theorem 21.2 (Herglotz-Riesz). Let F be an analytic function in the unit disk D such
that ReF ≥ 0 in D. Then there is a unique non-negative, finite, Borel measure µ on ∂D
such that

F (z) =

∫ 2π

0

eiθ + z

eiθ − z
µ(dθ) + i ImF (0).



HERGLOTZ-RIESZ THEOREM 21-3

Conversely every analytic function in the disk with positive real part can be written in this
form.

Proof. First apply the Herglotz theorem to ReF . Let

G(z) =

∫ 2π

0

eiθ + z

eiθ − z
µ(dθ).

So G and F are analytic functions on the disk whose real parts agree. It follows that F −G
is constant and imaginary. However G(0) = ReF (0) so F (z)−G(z) = i ImF (0). �

The theorem is often used in the following form

Theorem 21.3. Let F be an analytic map from the upper half plane {z : Im z > 0}
into itself. Then there is a unique non-negative Borel measure µ on R and a non-negative
number A ≥ 0 such that ∫

R

1

1 + x2
dµ(x) <∞

and

F (z) = Az + ReF (i) +

∫
R

1 + xz

x− z
1

1 + x2
dµ(x). (? ? ?)

Furthermore

A = lim
z→∞

F (z)

z
,

and

dµ(x) = wk∗ lim
y↓0

1

π
ImF (x+ iy)dx.

If limz→∞(F (z)−Az) = B exists and is real, and if limz→∞ z(F (z)−Az −B) exists then µ
is a finite measure and

F (z) = Az +B +

∫
R

1

x− z
dµ(x).

Remark. Note that
1 + xz

x− z
1

1 + x2
=

1

x− z
− Re

1

x− i
.

Proof. Consider the function

G(ζ) = −iF

(
i
1− ζ
ζ + 1

)
.

This is an analytic map from the disk into the right half plane. By the Herglotz-Riesz
theorem

F

(
i
1− ζ
ζ + 1

)
= i

∫ 2π

0

eiθ + ζ

eiθ − ζ
dν(θ) + ReF (i)

Now let z = i(1− ζ)/(ζ + 1), so ζ = (1 + iz)/(1− iz) and

F (z) = i

∫ 2π

0

eiθ(1− iz) + 1 + iz

eiθ(1− iz)− 1− iz
dν(θ) + ReF (i).

Now we define a map φ : ∂D \ {−1} → R via

φ(eiθ) = i
1− eiθ

1 + eiθ
,
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and let µ̃ = φ]ν, that is ∫
fdµ̃ =

∫
f ◦ φdν

for functions f ∈ C0(R). Now given g ∈ C(∂D), g − g(−1)1 vanishes at −1 and may be
written as

g − g(−1)1 = f ◦ φ
with f = (g − g(−1)1) ◦ φ−1. Thus∫

∂D

gdν =

∫
(g − g(−1)1) ◦ φ−1dµ̃+ g(−1)ν(∂D).

Since ν(∂D) = ImF (i), we conclude that

F (z) = ReF (i) + z ImF (i) +

∫
R

[
i
(1 + ix)(1− iz) + (1− ix)(1 + iz)

(1 + ix)(1− iz)− (1− ix)(1 + iz)
− z
]

dµ̃(x),

since φ−1(x) = (1 + ix)/(1− ix). After simplifying, this gives

F (z) = Az + ReF (i) +

∫
R

1 + xz

x− z
dµ̃(x),

with A = ImF (i)− µ̃(R). The representation (? ? ?) follows with dµ(x) = (1 + x2)dµ̃(x).
The identity

A = lim
z→∞

F (z)

z
holds since

1

z

∫
R

1 + xz

x− z
dµ̃(x) −→ 0.

Furthermore, if limz→∞ z(F (z)− Az −B) exists for some real number B then in particular

lim
t→∞

t(ImF (it)− iAt) = lim
t→∞

t

∫
R

Im
1 + itx

x− it
dµ̃(x)

exists and is finite. The integrand on the r.h.s. is

t2

x2 + t2
+ t2

x2

t2 + x2
=

t2

x2 + t2
(1 + x2)

converges pointwise, monotonically to (1 + x2). Thus µ is a finite measure, and

F (z) = Az + ReF (i) +

∫
R

1

x− z
dµ(x)− Re

∫
R

1

x− i
dµ(x).

One checks now that

lim
z→∞

(F (z)− Az) = ReF (i)− Re

∫
R

1

x− i
dµ(x). �
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Possible presentation topics

Please choose a presentation topic and discuss it with me by March 31. Presentations
will be 20 minutes in length and given in class April 16, 18, 21, 23 and 25.

(1) §9.1 Completeness of weighted powers in C0(R).
(2) §9.2 Müntz Approximation Theorem.
(3) §11.2 Divergence of Fourier Series.
(4) §11.3 Approximate quadrature.
(5) §11.5 Existence of solutions to P.D.E.’s
(6) §14.3 Completely monotone functions
(7) §14.7 Theorems of Carathéodory and Bochner
(8) §16.3.2 Hilbert Transform
(9) §16.3.3 Laplace Transform

(10) §16.4 Solution operators for hyperbolic equations
(11) §16.5 Solution operator for the heat equation
(12) §22.4 Operators defined by parabolic equations
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Homework II

Due: March 31, 2008

(1) (Ex. 1, Ch.6) Show that a norm that satisfies the parallelogram law comes from an
inner product.

(2) (Ex. 3, Ch. 6) Show that `2 is complete.

(3) Let X be a reflexive Banach space and Y ⊂ X a closed subspace of X. Show that
(Y ⊥)⊥ = Y .

(4) (Ex. 5, Ch. 8) Let X,µ be a measure space with µ a positive measure. Show that
if µ(X) = 1 then ‖f‖p is an increasing function of p

(5) Prove Theorem 11.3 of these notes.

(6) Prove that −∆|x|2−d = (d− 2)|Sd−1|δ(x) in the sense of distributions on Rd, d ≥ 3,
where ∆ = Laplacian, |Sd−1| is the area of the unit sphere {|x| = 1 : x ∈ Rd} and
δ(x) is the Dirac delta “function.”

(7) Consider the map T defined on Schwarz functions on the real line by the “principle
value integral:”

T (ψ) = P.V.

∫
R

1

x
ψ(x)dx = lim

ε↓0

[∫ ∞
ε

1

x
ψ(x)dx+

∫ −ε
−∞

1

x
ψ(x)dx.

]
Show that T is a tempered distribution. Convolution with T is the “Hilbert trans-
form.”

(8) (Thm. 20.4 of the notes) Let X ′ be the dual of a Banach space. Show that ` 7→ ‖`‖
is weak∗ lower semi-continuous and that

‖`‖ ≤ lim inf
n→∞

‖`n‖ .

(9) Prove Prop. 20.1 of these notes.

(10) Show that the unit ball in an infinite dimensional Hilbert space contains infinitely
many disjoint translates of a ball of radius

√
2/4. Conclude that there is no non-

trivial translation invariant measure on an infinite dimensional Hilbert space.

(11) A subset S of a Banach space is weakly bounded if for all ` ∈ X ′, supx∈S |`(x)| <
∞. Prove that S is weakly bounded if and only if it is strongly bounded, i.e.,
supx∈S ‖x‖ <∞.
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(12) Let X be a locally convex space.
(a) Let U be a compact neighborhood of 0. Show that one can find x1, . . . , xn so

that U ⊂ ∪ni=1(xi+
1
2
U), and thus a finite dimensional linear space Y ⊂ X with

U ⊂ Y + 1
2
U .

(b) Prove that U ⊂ Y + (1
2
)mU for any m.

(c) Prove that U ⊂ Y = Y .
(d) Conclude that X = Y = Y is finite dimensional.
Thus, any locally compact, locally convex, space is finite dimensional.

(13) Let X be a reflexive Banach space. Is the open unit ball in X open in the weak
topology?



Part 6

Convexity





LECTURE 22

Convex sets in a Banach space

Reading: §8.4 and Ch. 12 of Lax

Definition 22.1. The support function SM : X ′ → R of a subset M of a Banach space
X over R is the function

SM(`) = sup
y∈M

`(y).

The support function SM of a set M has the following properties:

(1) Subadditivity, SM(`+m) ≤ SM(`) + SM(m).
(2) SM(0) = 0.
(3) Positive homogeneity, SM(a`) = aSM(`) for a > 0.
(4) Monotonicity: for M ⊂ N , SM(`) ≤ SN(`).
(5) Additivity: SM+N = SM + SN . (Recall that M +N = {x+ y|x ∈M and y ∈ N}.)
(6) S−M(`) = SM(−`)
(7) SM = SM .

The proof of these is left as an exercise.
In addition, we have

(9) SM̆ = SM ,

where

Definition 22.2. The closed convex hull of a subset M of a Banach space, denoted M̆
is the smallest closed convex set containing M .

Remark. M̆ is also the closure of the convex hull M̂ , where the convex hull is the
smallest convex set containing M . (Exercise)

Let us prove property (9), assuming the other properties. First by (8) it suffices to show

SM̂ = SM . Since M ⊂ M̂ , by (5) we have SM ≤ SM̂ . However,

M̂ = {
n∑
j=1

ajxj : xj ∈M, aj > 0, and
∑
j

aj = 1}.

(Exercise: prove that this is in fact the smallest convex set containing M .) So for any point

in M̂ we have

`(
n∑
j=1

ajxj) =
n∑
j=1

aj`(xj) ≤ SM(`).

Thus SM̂ ≤ SM .
Here are some examples:

i. If M = {x0}, SM is just evaluation at x0.
ii. If M = BR(0) then SM(`) = R ‖`‖ .

22-1
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iii. If M = BR(x0) then M = {x0}+BR(0) so SM(`) = R ‖`‖+ `(x0).
iv. If M is a closed subspace then SM(`) = 0 for ` ∈M⊥ and ∞ for all other `.

Note that in the last example the set M is unbounded. For bounded sets, SM : X ′ → R,
however in general we define SM as a map from X ′ → R∪{∞}. We extend the order relation
and arithmetic to R ∪ {∞} by x ≤ ∞ and x +∞ = ∞ for all x and a∞ = ∞ for a > 0.
This extended function satisfies all of the above properties.

If M is bounded, then SM(`) ≤ const. ‖`‖ and is therefore continuous in the norm
topology, since by sub-additivity

|SM(`)− SM(`′)| ≤ max{SM(`− `′), SM(`′ − `)} ≤ const. ‖`− `′‖ .
This fails if M is unbounded, and also in the weak∗ topology. Nonetheless, we have the
following additional property

(10) SM is weak∗ lower semi-continuous

Indeed, since it is a sup of weak∗ continuous functions, we have

{` : SK(`) > t} =
⋃
z∈K

{` : `(z) > t} .

(Weak∗ continuity of a R∪{∞} valued function is defined in the same way as for a R valued
function.)

Theorem 22.1. The closed convex hull M̆ of a subset M of a Banach space X over R
is equal to

M̆ = {z : `(z) ≤ SM(`) for all `}.

Proof. Since SM = SM̆ it follows that `(z) ≤ SM(`) for all z ∈ M̆ .

Now, suppose z 6∈ M̆ . Since M̆ is closed there is an open ball BR(z) with BR(z)∩M̆ = ∅.
By the geometric Hahn-Banach theorem we can find a linear functional `0 and c ∈ R such
that

`0(u) ≤ c < `0(v) for all u ∈ M̆ and v ∈ BR(z).

In particular, if ‖x‖ ≤ R then

`0(−x) = −`0(x+ z) + `0(z) ≤ `(z)− c ,
so ‖`0‖ ≤ R−1(`0(z) − c). Thus `0 is bounded. From the definition of the norm of a linear
functional, we have

inf
‖x‖<R

`0(x) = −R ‖`0‖ .

Since for z + x ∈ BR(z) we have c ≤ `0(z + x), we find that

`0(z) ≥ c+R ‖`0‖ .
It follows that

`0(z) ≥ SM(`0) +R ‖`0‖ .
Thus `0 is a linear functional such that `0(x) > SM(`0). �

The theorem shows that a closed, convex set K is specified as the set

K = {z : ΦK(z) ≤ 0}
where

ΦK(z) = sup
`:‖`‖≤1

[`(z)− SK(`)].
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Since SK : X ′ → R ∪ {∞}, the function ΦK is initially defined as a map X → R ∪ {−∞}.
However, note that Φ(z) = −∞ for some z if and only if SK(`) =∞ for all `, in which case
Φ(z) = −∞ for all z and K = X. For any proper closed, convex set K there is some ` such
that SK(`) <∞ and ΦK : X → R.

Since SK is weak∗ lower semi-continuous, it follows that, for fixed z, `(z)−SK(`) is weak∗

upper semi-continuous, that is for each t

{` : `(z)− SK(`) < t}
is weak∗ open. This observation is relevant, since {‖`‖ ≤ 1} is compact, and

Proposition 22.2. Let K be a compact topological space and let F : K → R∪{−∞} be
upper semi-continuous. Then F is bounded from above and attains it’s maximum.

Remark. We did this for lower semi-continuous functions, but it didn’t make it into the
notes, so let’s prove it again.

Proof. The sets {F (x) < t} are increasing, open, and cover K. By compactness K ⊂
{F (x) < t} for some t. So F is bounded from above. Now let tm = supx∈K F (x). Suppose
F (x) < tm for all x. Then the sets {F (x) < t} for t < tm cover X. By compactness there is
then some t < tm such that K ⊂ {F (x) < t}, contradicting tm = supx∈K F (x). So there is a
point xm such that tm = F (xm). �

It follows that,
ΦK(z) = max

‖`‖≤1
[`(z)− SK(`)].

The function ΦK(z), being a sup of weakly continuous functions, is in turn weakly lower
semi-continuous. In particular,

K = {z : ΦK(z) ≤ 0}
is weakly closed! Thus we have obtained the following theorem:

Theorem 22.3 (Theorem 2, §12 of Lax). A convex set K of a Banach space is closed in
the norm topology if and only if it is closed in the weak topology.

This theorem is astounding, since there are certainly strongly closed sets that are not
weakly closed. (Weakly closed =⇒ strongly closed for any set.) For instance the complement
of an open ball {x : ‖x‖ ≥ 1} is norm closed but not weakly closed. (Exercise: prove this.)





LECTURE 23

Convex sets in a Banach space (II)

Reading: §8.4
Recall that we showed last time that a closed convex set K in a Banach space is equal to

K = {x : ΦK(x) ≤ 0} ,
where

ΦK(x) = max
‖`‖≤1

[`(x)− SK(`)], SK(`) = sup
z∈K

`(z).

The weak lower semi-continuity of ΦK showed that K is weakly closed. As a corollary we
have

Corollary 23.1. If X is reflexive, then a bounded, norm closed, convex subset K is
weakly compact.

Remark. This may fail if X is not reflexive. For instance in L1(R) the set K of non-
negative functions ρ ≥ 0 with integral

∫
ρ = 1 is convex, norm closed and bounded. However,

it is not weakly compact.
Similarly, this may fail if X is a dual and we take the weak∗ topology on X. For instance,

inside M0(R) – the space of finite measures on R – the space of probability measures is norm
closed, bounded, and convex but is not weak∗ closed.

All of the suggests that ΦK(x) might be a decent measure of how far a point x is from
K. In fact, it is precisely the distance of x to K!

Theorem 23.2. Let K be a closed, convex subset of a Banach space X. Then

ΦK(x) = inf
u∈K
‖x− u‖ .

Proof. Suppose x ∈ K. Then `(x)−SK(`) ≤ 0 for all ` so the maximum is attained at
` = 0 and ΦK(x) = 0.

If x 6∈ K and u ∈ K and ‖`‖ ≤ 1, then

SK(`) ≥ `(u) = `(u− x) + `(x) ≥ `(x)− ‖u− x‖ .
Thus

‖u− x‖ ≥ sup
‖`‖≤1

[`(x)− SK(`)].

On the other hand, if R < infu∈K ‖u− x‖, then the convex set K+BR(0) still has positive
distance from x. Thus by the Theorem of last lecture there is `0 ∈ X ′ such that

SK(`0) +R ‖`0‖ = SK+BR(0)(`0) < `0(x).

This inequality is homogeneous under positive scaling, so we may take ‖`0‖ = 1 to conclude

R < `0(x)− SK(`0) ≤ sup
‖`‖≤1

[`(x)− SK(`)].

As R was any number less than infu∈K ‖u− x‖ the reverse inequality follows. �
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Let us turn all of this around. Suppose we are given a function S : X ′ → R ∪ {∞}.
Consider the set

K = {z ∈ X : `(z) ≤ S(`) for all ` ∈ X ′}.
Then K is clearly convex and weakly closed, and it’s support function

SK(`) = sup
x∈K

`(z) ≤ S(`).

Can it happen that the inequality is strict? Of course it can, as the function S is arbitrary.
However, if we assume that S is, like SK , positive homogeneous, sub-additive, maps 0 to 0
and is weak∗ lower semi-continuous then the answer is “no,” at least if X is reflexive.

Theorem 23.3. Let X be a reflexive Banach space and let S : X ′ → R∪{∞} be a weak∗

lower semi-continuous function which is positive homogeneous, sub-additive, and maps 0 to
0. Then

S(`) = sup
x∈K

`(x),

where

K = {x : `(x) ≤ S(`) for all `}
.

Proof. To begin, let us prove the theorem under the additional restriction that S is
bounded: |S(`)| ≤ β ‖`‖. Then K is clearly bounded, since x ∈ K =⇒ ‖x‖ ≤ β. Since
S(0) = 0 the identity holds for ` = 0. So fix a non-zero linear functional `0. Let us define a
linear functional L ∈ X ′′, the double dual, via Hahn-Banach. Begin on the one-dimensional
subspace span{`0} and let

L(t`0) = tS(`0).

By positive homogeneity and sub-additivity L(t`0) ≤ S(t`0) for all t ∈ R. (Note that
S(−`0) ≥ −S(`0).) Thus by Hahn-Banach there is a linear functional L on X ′ which satisfies

L(`) ≤ S(`)

for every ` ∈ X ′. Since S(`) ≤ β ‖`‖ this functional is bounded. As X is reflexive there is
z ∈ X such that L(`) = `(z). Since `(z) ≤ S(`) for all ` this point z ∈ K, and since

S(`0) = L(`0) = `0(z),

we have

S(`0) = max
x∈K

`0(x).

As `0 was arbitrary, this completes the proof for S bounded.
To extend this to unbounded S, note that

−∞ < inf
‖`‖≤1

S(`) ≤ 0,

by wk∗ lower semi-continuity. Let −β = inf‖`‖≤1 S(`). Then by positive homogeneity,

S(`) ≥ −β ‖`‖ ,
that is S is bounded from below.

Now, for each ε define

Kε = {x : `(x) ≤ Sε(`) for all `} ,
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where

Sε(`) = inf
`1,`2∈X′ : `1+`2=`

[
S(`1) +

1

ε
‖`2‖

]
.

It is left as an exercise to show, for each ε > 0, that Sε is positive homogeneous, sub-additive
and maps 0 to 0. Note also that

−β ‖`‖ ≤ Sε(`) ≤
1

ε
‖`‖ , and Sε(`) ≤ S(`),

so Sε is bounded and smaller than S.
Now, in fact,

Kε = K ∩B 1
ε
(0).

Indeed, given x ∈ K ∩B1/ε(0) we have

`(x) = `1(x) + `2(x) ≤ S(`1) +
1

ε
‖`2‖

if ` = `1 + `2, so `(x) ≤ Sε(`) and x ∈ Kε. On the other hand if x ∈ Kε then `(x) ≤ S(`)
and 1

ε
‖`‖ for all ` so x ∈ K ∩B1/ε(0).

It follows that
K = ∪εKε.,

so
sup
x∈K

`(x) = sup
ε

sup
x∈Kε

`(x) = sup
ε
Sε(`).

Thus, it suffices to show, for fixed `, that

S(`) = sup
ε
Sε(`).

To show this, note that Sε increases as ε decreases, so

S0(`) := lim
ε→0

Sε(`) = sup
ε>0

Sε(`)

exists and (since Sε ≤ S) satisfies

0 ≤ S0(`) ≤ S(`).

Furthermore, for each ε we can find `ε such that

Sε(`) ≤ S(`− `ε) +
1

ε
‖`ε‖ ≤ Sε(`) + ε.

Since S(`− `ε) ≥ −β ‖`‖ − β ‖`ε‖ we see that

−β ‖`‖+

(
1

ε
− β

)
‖`ε‖ ≤ Sε(`) + ε.

Consider the following cases: (1) ‖`ε‖ /ε is bounded as ε→ 0 or (2) ‖`ε‖ /ε is unbounded as
ε→ 0 . In case (2) limε→0 Sε(`) = S0(`) = S(`) =∞. On the other hand, in case (1) `ε → 0
so by weak∗ lower semi-continuity of S we find that

S(`) ≤ lim inf
ε→0

S(`− `ε) ≤ S0(`)− lim inf
ε→0

1

ε
‖`ε‖ ≤ S0(`),

which completes the proof. �





LECTURE 24

Krein-Milman and Stone-Weierstrass

Reading: §13.3

Definition 24.1. An extreme subset S of a convex set K is a subset S ⊂ K such that

(1) S is non-empty and convex
(2) If x ∈ S and x = ty + (1− t)z with y, z ∈ K then y, z ∈ S.

An extreme point is a point x ∈ K such that {x} is an extreme subset.

The following is a classical result due to Carathéodory:

Theorem 24.1. Every compact convex subset K of RN has extreme points, and every
point of K can be written as a convex combination of (at most) N + 1 extreme points.

Remark. The proof is left as an exercise. Use induction on N . The case N = 1 is easy!

Theorem 24.2 (Krein and Milman). Let X be a locally convex space, K a non-empty,
compact, convex subset of X. Then

(1) K has at least one extreme point
(2) K is the closure of the convex hull of its extreme points.

Proof. Consider the collection E of all nonempty closed extreme subsets of K. Since
K ∈ E this collection is nonempty. Partially order E by inclusion. We wish to apply Zorn’s
lemma to see that E has a “maximal” element, i.e., a set that is minimal with respect to
conclusion.

Let T ⊂ E be a totally ordered sub-collection. That is T = {Eω : ω ∈ Ω} with Ω some
totally ordered index set and Eα ⊂ Eβ if α ≥ β. Clearly ∩T is a candidate for an “upper
bound.” To see this we must show that ∩T is nonempty, closed, and extreme.

Clearly ∩T is closed. Furthermore,one easily shows that the intersection of an arbitrary
family of extreme sets is extreme provided it is non-empty. Thus we need only show T is
non-empty. Here we use compactness of K in a crucial way.

Recall that a family F of closed sets is said to have the finite intersection property (FIP)
if any finite collection F1, . . . Fn ∈ F has non-empty intersection: F1 ∩ · · · ∩ Fn 6= ∅, and
there is the following result connecting the FIP and compactness:

Theorem 24.3. A topological space M is compact if and only if every collection F of
closed sets with the FIP satisfies

∩F 6= ∅.

Proof. Suppose M is compact and ∩F = ∅. Then ∪U = M with M = {F c : F ∈ F}.
Thus M = ∪nj=1F

c
j for some finite collection. Thus ∩nj=1Fj = ∅ and F does not have the FIP.

Conversely, if F is a collection of closed sets with the FIP and nonetheless ∩F = ∅, then
U = {F c : F ∈ {} is an open cover of M with no finite subcover so M is not compact. �
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Regarding our collection T , it clearly has the FIP since it is totally ordered, so any finite
collection E1, . . . En ∈ T has a minimal element. Thus ∩T 6= ∅.

Sp E has minimal elements. We claim that any such minimal element is a one point set.
Indeed, suppose E ⊂ E contains two distinct points (it must also contain the line segment
joining them). Then there is a continuous linear functional ` on X that separates these
points. Let M ⊂ E be the set

M = {x ∈ E : `(x) = max
z∈E

`(x)}.

Then M is a non-empty, proper, closed subset of E. It is clearly convex and one easily shows
it is an extreme subset of E. It follows that M is an extreme subset of K (why?) and M ( E
so E is not minimal.

This proves (1): K has at least one extreme point. (It might have only one: K could be
the set {x}.) Since any closed extreme subset E of K is itself a closed convex set we find
that every extreme subset of E has an extreme point x. It is easy to see that an extreme
point of E is also an extreme point of K (since E is an extreme subset). Thus

Every closed, extreme subset of K contains an extreme point of K.

Let Ke denote the set of extreme points, K̂e its convex hull, and K̆e its closed convex

hull which is the closure of K̂e. One easily shows that K̆e is convex. (Exercise)

Clearly K̂e ⊂ K, so since K is closed K̆e ⊂ K. On the other hand if z 6∈ K̆e then
there is an open set U with z ∈ U ⊂ Ke. We may take U to be convex. By the geometric
Hahn-Banach there is a linear functional ` and c ∈ R such that

`(x) < c ≤ `(y) for all x ∈ U and y ∈ K̆e.

(As U is open, all points of U are interior, so the first inequality is strict.) The gauge function
of U − z,

pU−z(x) = inf{t : x/t ∈ U − z}.
is a continuous seminorm on X (why?). If x/t ∈ U − z we have

1

t
`(x) = `(

x

t
+ z)− `(z) < c− `(z).

Thus

`(x) ≤ (c− `(z))pU−z(x),

and ` is a continuous linear functional because

Lemma 24.4. A linear functional on locally convex space is continuous if and only if it
is bounded with respect to some continuous seminorm.

Proof. Exercise. �

Since K is compact ` achieves its minimum on K. Let E be the set of minimizers. Then
E is closed, convex and extreme. (Why?) By the above derived result E contains an extreme
point. Thus

min
x∈K

`(x) = min
x∈Ke

`(x) > `(z).

Thus z 6∈ K. �

An interesting application of this theorem is:
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Theorem 24.5 (Stone-Wierstrass). Let S be a compact Hausdorff space and C(S) the
set of real valued continuous functions on S. Let E ⊂ C(S) be an sub-algebra, that is E is
linear subspace and f, g ∈ E =⇒ fg ∈ E. If the constant function 1 ∈ E and if for any
pair of points p, q ∈ S there is a function f ∈ E with f(p) 6= f(q), then E is dense in C(S)
in the max norm.

This theorem is due to Stone and generalizes the classical result of Weierstrass on ap-
proximation of continuous functions on an interval with polynomials: S = [0, 1] and E =
polynomials.

Sketch of proof. Consider the collection N of all finite measures µ on S such that∫
fdµ = 0 for all f ∈ E. Then S is dense if and only if M = {0}. (Why?)

By construction N is weak∗ closed. So K = N ∩ B1(0) is weak∗ compact. Furthermore
it is convex. Suppose K contains a non-zero measure µ. Then K must contain a non-zero
extreme point µ. Since µ is extreme we must have ‖µ‖ = 1 (otherwise we could write µ as
a linear combination of 0 and some multiple of µ).

Suppose such a µ exists. Since E is an algebra
∫
fgdµ = 0 for all f, g ∈ E. Thus

gdµ ∈ N for all g ∈ E. Now let g be a continuous function on S with 0 < g(p) < 1 for all
p ∈ S. Let

a =

∫
gd |µ| , b =

∫
(1− g)d |µ| .

So a, b > 0 and a+ b = 1 and gdµ/a, (1− g)dµ/b ∈ K. Since

dµ = a
g

a
dµ+ b

(1− g)

b
dµ

we must have gdµ/a = dµ (recall that µ is an extreme point).
Consider the support of µ:

suppµ = {p : |µ|(U) > 0 for any open neighborhood of p}.
Since dµ = gdµ/a for any g ∈ E that satisfies 0 < g(p) < 1 we must have g ≡ a on suppµ.
(Why?) Suppose p and q are distinct points in S. Then there is a function g ∈ E such that
0 < g < 1 and g(p) 6= g(q). (Just add a large constant to a function in E that separates p
and q). Thus at most one of the points p, q lies in the support of µ. That is the support of
µ is a single point suppµ{p0}! Since |µ|(1) = ‖µ‖ = 1 we have∫

f(p)dµ(p) = f(p0) or

∫
f(p)dµ(p) = −f(p0).

However, we have
∫

1dµ = 0 which is a contradiction, so N = {0} and E is dense. �

Following the above proof, we find

Theorem 24.6. The extreme points of the unit ball {µ :
∫

d|µ| ≤ 1} ⊂ M(S) are the
point masses ±δ(p− p0).

Theorem 24.7. If A ⊂ C(S) is a proper closed sub-algebra that separates points of S
then A = {f : f(p0) = 0} for some p0 ∈ S.

The algebras Ap = {f : f(p) = 0} are exactly the maximal ideals of C(S). It is no
accident that the set of maximal ideals is the set of proper sub-algebras that separate points
and is in one to one correspondence with extreme points of the unit ball in C(S)′ which is
in one to one correspondence with S.
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Choquet type theorems

Reading: §13.4 and 14.10
In finite dimensions, Caratheodory’s Theorem shows that points of a compact set may be

expressed as a convex combination of extreme points: no more than N + 1 points are needed
in dimension N . (A simplex shows that this number is optimal.) The following generalizes
this idea to LCS’s:

Theorem 25.1. Let X be an LCS and K a non-empty compact, convex subset of X. For
any u ∈ K there is a Borel probability measure µu on Ke the closure of the set of extreme
points such that

`(u) =

∫
Ke

`(x)dµu(x) (?)

for all ` ∈ X ′.

Remark. The integral in the theorem is understood as the identity

u =

∫
Ke

xdµu(x),

“in the weak sense.” This expresses u as a generalized convex combination of points of Ke.
Lax presents without proof a sharper theorem , due to Choquet, in which the measure µu

is defined onKe providedK is metrizable. Any representation of type (?) is called a “Choquet
decomposition.” Such representations need not be unique, even in finite dimensions, for
example if K is a disk in R2.

Proof. The general idea of the proof is to show that given a function f on Ke we can
“evaluate it” at a pont u ∈ K and produce a bounded linear functional: f 7→ f(u). We then
represent this linear functional as a measure on Ke via Riesz-Kakutani.

There are two complications: (1) not every function f on Ke can be extended in a
reasonable, or unique way to u ∈ K and (2) Riesz-Kakutani does not apply since Ke may
not be compact. The second complication is easily dealt with by replacing Ke with it’s
closure Ke which, being a closed subset of a compact space (K) is compact.

As for the first: any linear functional ` ∈ X ′ can be evaluated at u. Furthermore, being
continuous and linear, ` achieves its max and min over K on the set of extreme points Ke.
(We saw this in the proof of Krein-Millman.) That is

min
x∈Ke

`(x) ≤ `(u) ≤ max
x∈Ke

`(x) for all u ∈ K.

It follows that if `1(x) = `2(x) for x ∈ Ke then `1 = `2 on K, so any linear functional
is determined on K by it’s restriction to Ke. Let Y ⊂ C(Ke) be the subspace of maps
f : Ke → R with

f(x) = `(x)

25-1



25-2 25. CHOQUET TYPE THEOREMS

for some ` ∈ X ′, or f(x) = c for some c ∈ R. Define a linear functional L on Y by

L(f) =

{
`(u) f(x) = `(x)

c f(x) = c.

Then L is a positive linear functional on Y and Y contains the constant functions. By
Theorem 3.1 of these notes, we may extend L as a positive linear functional on the space of
all functions. Restricting this linear functional to C(Ke), we obtain by Riesz-Kakutani that

L(f) =

∫
Ke

f(x)dµu(x) for all f ∈ C(Ke)

for some µu. In particular (?) holds. Since µu(1) = L(1) = 1 µu is a probability measure. �

The Riesz-Kakutani theorem, which was used in the above proof, is it-self an example of
this theorem. Indeed, let K ⊂ C(S)′ be the closed unit ball of the dual of C(S) with S a
compact Hausdorff space. We saw last time that the extreme points Ke are point evaluations:

`p,±1(f) = ±1× f(p)

for some p ∈ S. Thus Ke is in one to one correspondence with S × {−1,+1}. Exercise:
show that Ke = S × {−1,+1} as topological spaces, where Ke has the weak∗ topology and
S × {−1,+1} has the product topology using the discrete topology on {−1,+1} (all sets –
all 4 of them – are open). The above theorem shows that any linear functional ` ∈ K, with
norm no larger than 1, can be written as a combination

`(f) =

∫
S×{±1}

`p,σ(f)dm(p, σ) =

∫
S

f(p)dm(p,+)− f(p)dm(p,−1) =

∫
S

f(p)dµ(p)

with dµ(p) = dm(p,+)− dm(p,−1).

Measure preserving maps

Let Ω be a compact metric space and let T : Ω→ Ω be a homeomorphism. Consider the
set K of all probability measures on Ω that are invariant with respect to T :

K = {µ ∈M(Ω) : µ ≥ 0, µ(Ω) = 1, and µ(S) = µ(T (S)) for all measurable S} .
We say that µ is ergodic under T provided T (S) ⊂ S =⇒ µ(S) = 0 or 1.

The following is one of the most important applications of Choquet type theorems.

Theorem 25.2. The set K is non-empty, convex and compact in the weak∗ topology.
The extreme points of K (which exist by Krein Millman) are the ergodic measures. Every
invariant measure can be represented uniquely as an average of ergodic measures.

Sketch of proof. Convexity of K is easy. Since K is clearly a subset of the unit ball
in M(Ω) it is compact once it is closed. Weak∗ closure follows since

µ ∈ K ⇐⇒
∫

Ω

f(T−1(ω))dµ(ω) =

∫
Ω

f(ω)dµ(ω)

for all f ∈ C(Ω). To see that K is non-empty, pick a point ω0 ∈ Ω and consider the sequence
of measures νn given by ∫

f(ω)dνn(ω) =
1

n

n∑
j=0

f(T−j(ω0)).
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This is a sequence of probability measures on Ω. Since the unit ball is weak∗ compact there
is a weak∗ convergent subsequence. The limit ν of this subsequence satisfies ν ≥ 0, ν(Ω) = 1,
and∫

f(T−1(ω))dν(ω) = lim
k→∞

1

nk

nk∑
j=0

f(T−j−1(ω0))

= lim
k→∞

1

nk

nk∑
j=0

f(T−j(ω0)− 1

nk
f(ω0) +

1

nk
f(T−nk−1(ω0)) =

∫
f(ω)dν(ω).

Suppose µ ∈ K is not ergodic. Then there must be a disjoint union Ω1 ∪ Ω2 = Ω with
T (Ωj) ⊂ Ωj and µ(Ωj) > 0. Let µj be the restriction of µ to Ωj renormalized to be a
probability measure:

µj(S) =
µ(S ∩ Ωj)

µ(Ωj)
.

Then each µj is invariant under T and

µ = µ(Ω1)µ1 + µ(Ω2)µ2

so µ is not extreme.
Conversely, suppose µ is not extreme, so

µ = am1 + (1− a)m2

with m1 6= m2 ∈ K and 0 < a < 1. Suppose m2 << m1. Then by Radon-Nikodym there is
f ∈ L1(m1), f 6≡ 1, such that

dµ = (a+ (1− a)f)dm1.

Since µ and m1 are invariant under T we must have f(T (ω)) = f(ω) for m1 almost every ω.
Since f 6≡ 1 the sets Ω1 = {ω : f(ω) ≤ 1} and Ω2 = {ω : f(ω) > 1} are separately invariant
under T and both have positive µ measure. So µ is not ergodic.

If m2 6<< m1 then the situation is even happier. For then there is some set S such that
m1(S) = 0 but m2(S) > 0. Let Ω1 = ∪∞j=0T

j(S). Then m1(Ω1) = 0, m2(Ω1) ≥ m2(S) > 0
and Ω1 is invariant under T . Since m1(Ω1) = 0 we must have µ(Ω1) ≤ 1 − a so µ(Ω2) > 0
with Ω2 = Ω \ Ω1. Thus µ is not ergodic.

The representation of µ as a unique integral over ergodic measures is clearly a Choquet
type representation – we need not take the closure of extreme points since the space of
measures is metrizable in the weak∗ topology as it is the dual of a separable Banach space
(this was “Choquet’s theorem” which we did not prove). The uniqueness requires a separate
argument, for which Lax refers a paper of Oxtoby in Bull. AMS 58 (1952). �





Part 7

Bounded Linear Maps





LECTURE 26

Bounded Linear Maps

Definition 26.1. Let X and Y be Banach spaces. A linear map M : X → Y is bounded
if there is some 0 ≤ c <∞ such that

‖Mx‖Y ≤ c ‖x‖X .

The smallest such c is called the norm, or operator norm, of M , denoted ‖M‖.

Theorem 26.1. A linear map M : X → Y is continuous if and only if it is bounded.

Proof. Bounded implies Lipschitz continuous since

dist(Mx,My) = ‖Mx−My‖ ≤ ‖M‖ ‖x− y‖ = ‖M‖ dist(x, y).

On the other hand if M is not bounded then there is a sequence xn such that

‖Mxn‖ > n ‖xn‖ .

As this inequality is invariant under scaling we may take ‖xn‖ = 1/
√
n so xn → 0 but

‖Mxn‖ → ∞. �

Theorem 26.2. The operator norm has the following properties

• ‖aM‖ = |a| ‖M‖ for all a ∈ F (homogeneity)
• ‖M‖ ≥ 0 and ‖M‖ = 0 if and only M ≡ 0 (positivity)
• ‖M +K‖ ≤ ‖M‖+ ‖K‖ (sub-additivity)

That is the operator norm is a norm.

Note that the norm is defined to be

‖M‖ = sup
x 6=0

‖Mx‖
‖x‖

.

By homogeneity this is the same as

‖M‖ = sup
‖x‖=1

‖Mx‖ .

If M is bounded on a normed space which is incomplete then M has an extension to the
completion (as does any continuous function) which is also bounded, with the same norm.

Definition 26.2. Let L(X, Y ) denote the set of all bounded linear maps from X to Y .

Theorem 26.3. Let X be a normed space and let Y be a Banach space. Then L(X, Y )
is a Banach space under the operator norm.

Proof. Since ‖·‖ is a norm, we need to show completeness. Suppose Mn is a Cauchy se-
quence. For each x ∈ X it follows thatMnx is a Cauchy sequence in Y , since ‖Mnx−Mmx‖ ≤
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‖Mn −Mm‖ ‖x‖. By completeness of Y there is a limit. Call this limit Mx. It is easy to see
that M is linear. Moreover, if ‖x‖ = 1,

‖Mx‖ = lim
n
‖Mnx‖ ≤ lim sup

n→∞
‖Mn‖ <∞,

so ‖M‖ is finite and M is bounded. �

The operator norm topology on L(X, Y ) is called the uniform topology. There are two
other natural topologies on this space

Definition 26.3. The strong topology on L(X, Y ) is the weakest TVS topology such
that all functions M 7→ Mx are continuous from L(X, Y ) → Y . The weak topology (or
weak operator topology) on L(X, Y ) is the weakest TVS topology such that all maps M 7→
`(M(x)), for ` ∈ Y ′ and x ∈ X, are continuous.

Weak and strong sequential convergence are defined similarly. A sequence Mn converges
strongly if

s− lim
n
Mnx exists in Y for every x,

and converges weakly if

wk− lim
n
Mnx exists in Y for every x.

Note that the weak operator topology on L(X, Y ) is potentially much weaker than the weak
topology on L(X, Y ) as a Banach space: the linear functionals M 7→ `(M(x)) are just one
kind of linear functional on L(X, Y ).

Definition 26.4. The transpose of a linear operator M ∈ L(X, Y ) is the map M ′ ∈
Y ′,X ′ defined by

〈x,M ′`〉 = 〈Mx, `〉 ,
where we use the dual pairing notation 〈y, `〉 = `(y).

Definition 26.5. The null space of a linear operator M is the set

NM = {x ∈ X : Mx = 0}.
The range of M is the set

RM = {Mx : x ∈ X}.

Theorem 26.4. Let M ∈ L(X, Y ) with X and Y normed spaces. Then

(1) M ′ is bounded and ‖M ′‖ = ‖M‖
(2) The nullspace of M ′ is the annihilator of the range of M :

NM ′ = R⊥M .

(3) The nullspace of M is the annihilator of the range of M ′:

NM = R⊥M ′ = {x : 〈x, `〉 = 0 if ` ∈ RM ′}.
(4) (aM + bN)′ = aM ′ + bN ′

Proof. Exercise, or see Lax. �

As a corollary we see that NM and NM ′ are weak and weak∗ closed respectively. Since
these sets are subspaces this is the same as being closed. This is the first part of

Theorem 26.5. Let M ∈ L(X, Y ) with X and Y normed spaces. Then
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(1) NM is a closed linear subspace of X.
(2) M , regarded as a map

M0 :
X

NM

→ Y

is one-to-one, bounded, with ‖M0‖ = ‖M‖ and RM0 = RM .

Proof. The facts that M0 is one-to-one and RM0 = RM are general facts about linear
maps. To see that M0 is bounded, recall that X/NM is the set of equivalence classes [x] with
x ∼ y if x− y ∈ NM and we put a norm on this space by

‖[x]‖ = inf
y∈NM

‖x+ y‖ .

Since M0[x] = Mx = M(x+ y) for any y ∈ NM we have

‖M‖ = sup
x 6=0

‖Mx‖
‖x‖

= sup
x 6=0

sup
y∈NM

‖M(x+ y)‖
‖x+ y‖

= sup
[x]6=0

‖M0[x]‖
‖[x]‖

= ‖M0‖ .

�

Regarding convergence of adjoints we have the following

Proposition 26.6. If wk− limMn = M then wk− limM ′
n = M ′.

Proof. Exercise. �

However, this does not hold for strong limits or uniform limits. For example, on any `p
space, 1 < p <∞, let Sj be the jth forward shift, the map Sj ∈ L(`p, `p) given by

S(a0, a1, . . .) = (0, . . . , 0︸ ︷︷ ︸
j zeroes

, a0, a1, . . .).

Then Sj converges to zero weakly, but

‖Sja‖`p = ‖a‖`p ,

so Sj does not converge to zero strongly. On the other hand the adjoint S ′j is the backwards
j shift,

S ′j(a0, a1, . . .) = (aj, aj+1, . . .).

This map converges to zero strongly since∥∥S ′ja∥∥`p′ → 0

for 1 < p <∞. (It does not converge to zero strongly for p = 1.)





LECTURE 27

Principle of Uniform Boundedness and Open Mapping Theorem

Reading: §15.3–15.5
As for linear functionals, we have the following useful criteria for strong/weak conver-

gence:

Proposition 27.1. Let Mn ∈ L(X, Y ) be a sequence of bounded maps between Banach
spaces X and Y . Suppose that Mn are uniformly bounded:

sup
n
‖Mn‖ <∞.

(1) If Mnx converges in norm for all x in a dense subset of X then Mn converges in
the strong operator topology.

(2) If Mnx converges weakly for all in a dense subset of X then Mn converges in the
weak operator topology.

Proof. Exercise. �

As in the case of linear functionals, boundedness turns out to be necessary for convergence
as well:

Theorem 27.2 (Principle of Uniform Boundedness). Let X and Y be Banach spaces and
let M⊂ L(X, Y ) be a collection of bounded linear maps. If for each x ∈ X and ` ∈ Y ′ there
is a constant c(x, `) such that

|〈Mx, `〉| ≤ c(x, `) for all M ∈M,

then M is uniformly bounded, i.e., there is c <∞ such that

‖M‖ ≤ c for all M ∈M.

Sketch of proof. This follows very closely the proof of the PUB for linear functionals,
Corollary 19.6 of these notes. First apply that result to conclude that for each x ∈ X there
is c(x) with ‖Mx‖ ≤ c(x) for all M ∈ M. Then consider the collection of real values,
continuous, positive homogeneous functions f(x) = ‖Mx‖ on the Banach space X. Apply
Theorem 19.5 to conclude that ‖Mx‖ ≤ c ‖x‖ for all M ∈M. �

The PUB follows from the Baire category theorem. This theorem also implies several
results which show that bounded linear maps have a number of useful properties in addition
to continuity.

Theorem 27.3. Let X and Y be Banach spaces and M : X → Y a bounded linear map
of X onto Y . Then the image of the unit ball MB1(0) contains an open ball around the
origin in Y .

Corollary 27.4 (Open mapping theorem). A bounded linear map M from X onto Y ,
with X and Y Banach spaces, is open that is M(U) is open in Y for any open subset U ⊂ X.
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Proof. Let U be open in X. Then given y ∈ M(U) we have y = Mx for some x ∈ U .
Since U is open x+εB1(0) ⊂ U for some ε > 0. Thus Mx+εMB1(0) ⊂MU so MU contains
an open ball centered at y = Mx. �

Proof of Theorem. Since M maps X onto Y we have

Y = ∪∞n=1MBn(0).

By the Baire category theorem at least one of the sets MBn(0) is dense in some open set.
That is there are δ > 0 and y ∈ Y such that MBn(0) ∩ (y +Bδ(0)) is dense in Bδ(0). Since
M is onto, there is x ∈ X such that Mx = y. So M(Bn(0) − x) is dense in Bδ(0). By the
triangle inequality,

Bn(0)− x ⊂ Bn+‖x‖(0).

By homogeneity we conclude that for every r > 0, MBr(0) is dense in Bαr(0) with

α = δ/(n+ ‖x‖).
Now let y ∈ Bα(0) ⊂ Y . Then there is x1 ∈ B1(0) such that

‖y −Mx1‖ ≤
1

2
α

Let y1 = y −Mx1. So y1 ∈ B 1
2
α(0). Thus there is x2 ∈ B 1

2
(0) such that ‖y1 −Mx2‖ ≤ 1

4
α.

That is

‖y −M(x1 + x2)‖ ≤ 1

4
α.

Following this procedure construct, by induction, a sequence x1, x2, . . . with

(1) xj ∈ B 1

2j−1
(0) ⊂ X

(2)
∥∥∥y −M∑n

j=1 xj

∥∥∥ ≤ 1
2j
α.

Now the partial sums
∑n

j=1 xj converge as n→∞ to some point x ∈ X with

‖x‖ ≤
∞∑
j=1

21−j = 2.

Clearly y = Mx. Thus Bα(0) ⊂MB2(0) and the result follows by homogeneity. �

Theorem 27.5. Let X and Y be Banach spaces and M : X → Y a bounded, one-to-one
map of X onto Y . Then the inverse map M−1 is bounded from Y → X.

Note in particular that

‖Mx‖ ≥ 1

‖M−1‖
‖x‖ .

Thus bounded, one-to-one and onto =⇒ M is bounded from below! This is somehow
amazing because we were not given any quantitative information on the inverse just it’s
existence.

Proof. Since MB1(0) ⊃ Bd(0) for some d > 0 we have

M−1y ∈ B1(0)

for all y ∈ Bd(0). By homogeneity ‖M−1‖ ≤ 1/d. �

Definition 27.1. A map M : X → Y is closed if whenever xn → x in X and Mxn → y
in Y then Mx = y.
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Theorem 27.6 (Closed Graph Theorem). Let X and Y be Banach spaces and M : X →
Y a closed linear map. Then M is bounded.

Proof. Let the graph G of M by the set of all pairs (x,Mx) with x ∈ X. By linearity
of M , G is a linear space under coordinate-wise addition and scalar multiplication. Give G
a norm by defining

‖(x,Mx)‖ = ‖x‖+ ‖Mx‖ .
Since M is closed, the space G is complete in this norm. Now let P : G → X be the
map P (x,Mx) = x. So P is bounded (‖P‖ ≤ 1), one-to-one and onto. It follows that
P−1x = (x,Mx) is bounded. Thus there is a constant c <∞ such that

‖(x,Mx)‖ ≤ c ‖x‖ .
So

‖Mx‖ ≤ (c− 1) ‖x‖ . �

Definition 27.2. Let X be a linear space and let ‖·‖1 and ‖·‖2 be two norms on X. The
norms ‖·‖j , j = 1, 2 are called compatible if whenever a sequence converges in both norms
the limits are equal.

For example, on L1 ∩ L2 the L1 and L2 norms are compatible.

Corollary 27.7. Let X be a linear space and let ‖·‖j,j = 1, 2 be compatible norms. If

X is complete in both norms then the two norms are equivalent: there is c ∈ (0,∞) such
that c−1 ‖x‖1 ≤ ‖x‖2 ≤ c ‖x‖1.

Proof. Let Xj, j = 1, 2, be the Banach space which is X under norm ‖·‖j, j = 1, 2.
The identity map I : X1 → X2 is closed by compatibility of the norms. Thus I is bounded.
Likewise I : X2 → X1 is bounded. �





LECTURE 28

The Spectrum of a Linear Map

Reading: §15.5 and 20.1
First some observations about composition of linear maps. If M : X → Y and N : Y → Z

are linear maps their composition (NM)x = N(Mx) is a map NM : X → Z.

Theorem 28.1. If M and N are bounded then so is NM . Furthermore

(1) ‖NM‖ ≤ ‖N‖ ‖M‖
(2) (NM)′ = M ′N ′.

Proof. Exercise, or see Lax. �

We now consider some general properties of linear maps from a Banach space X into
itself. Let L(X) = L(X,X). A map M ∈ L(X) is invertible if M maps X onto X and is
1−1. We saw last time that it follows from the open mapping theorem that M−1 is bounded
as well. Let GL(X) denote the set of all invertible maps in L(X).

Proposition 28.2. If K,L ∈ GL(X) then so is KL and (KL)−1 = L−1K−1.

Theorem 28.3. GL(X) is an open set in the uniform topology.

Proof. We must show that if K is invertible then so is every map of the form K + A
with ‖A‖ < ε for some ε > 0. Since K + A = K(1 + K−1A) and ‖K−1A‖ ≤ ‖K−1‖ ‖A‖ it
suffices to prove this for K = 1 the identity map.

The basic idea is to make use of the geometric series to write (1 + A)−1 as
∞∑
n=0

(−1)nAn.

Since
‖An‖ ≤ ‖A‖n

this series converges once ‖A‖ < 1. But then

(1 + A)
N∑
n=0

(−1)nAn = 1 + (−1)NAN+1 → 1

as N →∞ so (1 + A) is invertible. �

Definition 28.1. The resolvent set ρ(M) of a linear operator M is the set of λ ∈ C such
that (λ1−M) ∈ GL(X). The spectrum σ(M) of M is the complement of ρ(M), that is the
set of λ such that λ1−M is not invertible.

Theorem 28.4. The resolvent set ρ(M) is open and contains the set {λ : |λ| > ‖M‖}.
Furthermore, if |λ| > M then ∥∥(λ1−M)−1

∥∥ ≤ 1

|λ| − ‖M‖
. (?)
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Proof. It follows from the previous theorem that the resolvent set ρ(M) is open. Also
following the proof of the previous theorem we see that if λ > ‖M‖ then

(λ1−M)−1 =
∞∑
n=0

λ−(n+1)Mn,

so λ ∈ ρ(M). The estimate (?) follows by summing the r.h.s. of∥∥(λ1−M)−1
∥∥ ≤ ∞∑

n=0

|λ|−(n+1) ‖M‖n .

�

Theorem 28.5. For any λ ∈ ρ(M) we have∥∥(λ1−M)−1
∥∥ ≥ 1

dist(λ, σ(M))
.

Proof. For |z| < 1/ ‖(λ1−M)−1‖ the geometric series

((λ+ z)1−M)−1 =
∞∑
n=0

(−z)n(λ1−M)−1−n

is absolutely convergent, so λ+ z ∈ ρ(M). �

It follows that for any x ∈ X and ` ∈ X ′ the function

fx,`(λ) = 〈(λ1−M)−1x, `〉,
has a convergent power series expansion at each point of ρ(M). Thus fx,` is analytic in ρ(M).
From (?) we have

|fx,`(λ)| ≤ ‖x‖ ‖`‖ 1

|λ| − ‖M‖
for large |λ|. Thus fx,` vanishes at infinity. By Liouville’s theorem a bounded entire function
is constant. Thus, we have either fx,` ≡ 0 or ρ(M) 6= C.

Theorem 28.6. σ(M) is a non-empty closed subset of the disk {λ : |λ| ≤ ‖M‖}.

Proof. It follows from the previous proof that σ(M) is closed and contained in {|λ| ≤
‖M‖}. Suppose σ(M) is empty, so ρ(M) = C. It follows that fx,` ≡ 0 for all x ∈ X and
` ∈ X ′. This however is a contradiction as then (λ1 − M)−1 = 0, so 0 is an invertible
operator. �

Theorem 28.7. σ(M) = σ(M ′).

Since (λ1−M)′ = λ1−M ′, this follows easily from

Lemma 28.8. K ∈ GL(X) if and only if K ′ ∈ GL(X ′).

Proof. If K is invertible then KL = LK = 1X with L = K−1. By taking adjoints

L′K ′ = K ′L′ = 1X′ ,

so K ′−1 = [K−1]′.
Supposes now that K ′ is invertible. Then ranK ′ = X ′, so the null space of K (which

is the annihlator of ranK ′) is {0}. Thus K is one-to-one. To see that K is onto, note that
since NK′ = {0} it follows that ranK is dense. Thus it suffices to show ranK is closed. To
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prove this, note that K ′′ ∈ GL(X ′′) by the first part of the theorem and that K ′′x = Kx
for x ∈ X. However, X is a norm closed subspace of its double dual, since the norm on
the double dual is the same as the norm on X (by the dual characterization of the norm
‖x‖ = sup` |〈x, `〉|). Applying the following lemma with Y = X ′′ and L = [K ′′]−1 it follows
that K has closed range.

Lemma 28.9. Let K ∈ L(X, Y ) and suppose there is L ∈ L(Y,X) such that LK = 1X .
Then NX = {0} and ranK is closed.

Proof. Clearly NX = {0}. On the other hand if Kxn → y is a convergent sequence in
ranK, then xn → Ly so Kxn → KLy = y and y ∈ ranK. �

�

In finite dimensions the spectrum of a linear operator is the same as the set of eigenvalues.
This follows since if X is finite dimensional then K ∈ L(X) is invertible if and only if it is
one-to-one NX = {0}. In infinite dimension, an operator K may fail to be invertible for a
number of reasons:

(1) NK may be non-trivial.
(2) ranK is contained in a proper closed subspace of X, in which case NK′ is non-trivial.
(3) ranK is a proper dense subspace of X

It follows that λ ∈ σ(M) must satisfy (at least) one of the following:

(1) λ is an eigenvalue. That is there is non-zero x such that Mx = λx.
(2) The range of λ1−M is contained in a proper closed subspace of X, in which case

λ is an eigenvalue of M ′.
(3) The range of λ1−M may be a proper dense subspace of X.

All three possibilities occur, so spectrum — and spectral theory — in infinite dimensions
is a good deal more complicated than in finite dimensions.





LECTURE 29

Some examples

Reading: §20.2-§20.3

Shifts

Let R and L denote the right and left shifts on c0, sequences that vanish at ∞,

R(a1, a2, . . .) = (0, a1, a2, . . .)

L(a1, a2, . . .) = (a2, a3, . . .).

Let Rp, Lp denote the restriction of these operators to `p, 1 ≤ p <∞ and let R∞, L∞ denote
the natural extension of these to `∞. Note that we have

R′ = L1 and L′ = R1,

R′p = Lp′ and L′p = Rp′ ,

1/p+ 1/p′ = 1, 1 ≤ p <∞.

Proposition 29.1. σ(R) = σ(L) = σ(Rp) = σ(Lp) = {|λ| ≤ 1}, for each 1 ≤ p ≤ ∞.

Proof. First note that ‖R‖ = ‖L‖ = ‖Rp‖ = ‖Lp‖ = 1, so all of the various spectra are
contained in the unit disk. On the other hand for each |λ| < 1 the sequence

(λ, λ2, λ3, . . .)

is an eigenvector of the left shift with eigenvalue λ. Since this vector lies in ∩p`p = `1 and
the spectrum is closed we have σ(L) = σ(Lp) = {|λ| ≤ 1}. Since R1 = L′ and Rp = L′p′ ,
1 < p ≤ ∞, it follows that σ(Rp) = {|λ| ≤ 1} for 1 ≤ p ≤ ∞. Likewise, since L1 = R′ it
follows that σ(R) = σ(L1) = {|λ| ≤ 1}. �

Now consider the space co(Z) of two sided sequences. We may define right and left shifts
here as well

R̃(. . . , a−1, a0, a1, . . .) = (. . . , a−2, a−1, a0, . . .)

L̃(. . . , a−1, a0, a1, . . .) = (. . . , a0, a1, a2, . . .).

Note that these operators are isometries and inverses of each other R̃L̃ = L̃R̃ = 1.

Proposition 29.2. σ(R̃) = σ(L̃) = {|λ| = 1}.

We use

Lemma 29.3. Let M ∈ L(X) be an isometry onto X. Then σ(M) ⊂ {|λ| = 1}.
29-1
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Proof. Since ‖Mx‖ = ‖x‖ for all x, M is 1 − 1. As M is also onto, 0 ∈ ρ(M). As
‖M‖ = 1, it follows that σ(M) ⊂ {|λ| ≤ 1} and that {|λ| < 1} ⊂ ρ(M), as the geometric
series

(λ−M)−1 = −
∞∑
n=0

λnM−n−1

converges there. �

Proof of Proposition. It follows from the lemma that the two spectra are subsets

of the circle. We show that ran(λ− R̃) 6= c0(Z) for each λ of modulus one. The proof for L̃
is similar.

Suppose (λ1− R̃)a = b. Then the coefficients satisfy

λaj − aj−1 = bj.

Since aj−1 − λ−1aj−2 = λ−1bj−1 it follows that

λaj − λ−1aj−2 = (bj + λ−1bj−1).

Continuing we conclude that

λaj − λ−naj−n−1 =
n∑

m=0

λ−mbj−m.

Since aj−n−1 → 0 as n→∞ we find that

aj = lim
n→∞

n∑
m=0

λ−m−1bj−m.

Thus, for instance, the sequence bj = λ−j 1
|j|+1

cannot be in ran(λ1− R̃) since

n∑
m=0

λ−m−1bj−m = λ−j−1

n∑
m=0

1

|j −m|+ 1

diverges as n→∞. �

Note an amusing point of the proof: we actually derived a formula for the inverse of

(λ1− R̃). The point is that this inverse is defined only on a dense domain in X.
Similarly, we have

Proposition 29.4. Let R̃p, L̃p be the right and left shifts on `p(Z) for 1 ≤ p ≤ ∞. Then

σ(R̃p) = σ(L̃p) = {|λ| = 1}.

The case p =∞ is easy since then every point of the circle is an eigenvalue of each shift.
The remaining cases are left as an exercise.

Volterra Integral Operators

Consider the operator of integration

V f(x) =

∫ x

0

f(y)dy

on the Banach space X = C[0, 1].
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Theorem 29.5. V is a bounded operator, ‖V ‖ ≤ 1, and σ(V ) = {0}. 0 is not an
eigenvalue of V .

Proof. It is easy to verify that ‖V ‖ ≤ 1. Clearly V f = 0 if and only if f = 0 so 0 is not
an eigenvalue of V . Lax’s proof that σ(V ) = {0} relies on results from the theory of Banach
algebras which we have not proved yet, so let us proceed directly. We will give a formula for
the inverse of λ1− V . Note that

V nf(x) =

∫ x

0

∫ y1

0

. . .

∫ yn−1

0

f(yn)dyndyn−1 · · · dy1.

It follows that

‖V nf‖ ≤ ‖f‖
∫ 1

0

∫ y1

0

. . .

∫ yn−1

0

f(yn)dyndyn−1 · · · dyn =
1

n!
‖f‖ .

Thus the geometric series
∞∑
n=0

1

λn+1
V n

is norm convergent with norm bounded by |λ|−1e|λ|
−1
. Clearly

(λ1− V )
∞∑
n=0

1

λn+1
V n = 1.

Thus λ1−V is boundedly invertible for all λ 6= 0. Since the spectrum is non-empty we must
have σ(V ) = {0}. �

One can also verify directly that V is not invertible. After all V f(0) = 0 so ranV is
contained in the space of functions that vanish at 0. Note that V ′ is the map on M[0, 1]
which maps a measure dµ to the measure µ(x, 1]dx. That is V ′(µ)(S) =

∫
S
µ((x, 1])dx for

any measurable set. Thus 0 is an eigenvalue of V ′ with eigenvector δ0dx.





Part 8

Compact Linear Maps





LECTURE 30

Compact Maps

Motivation: integral operators

Let T be a compact Hausdorff space and µ a Borel measure on T . Suppose K(s, t) is a
continuous function on T × T and define a map K ∈ L(C(T )) by

Kf(s) =

∫
T

K(s, t)f(t)dµ(t).

Since K is continuous on a compact space, hence uniformly continuous and bounded, the
image Kf is continuous and satisfies

max
s
|Kf(s)| ≤ const.max

t
|f(t)|.

Thus K is indeed a bounded map from C(T ) into itself.
Such maps are certainly on of the most important examples of bounded linear maps.

(There are L1, L2, etc. analogues.) The map is not typical, however, because it has one
additional important property. Suppose |f(t)| ≤ 1 for all t. Then

|Kf(s)−Kf(r)| ≤ |µ|(T ) sup
t
|K(s, t)−K(r, t)|.

Since the right hand side is finite and converges to zero as r → s we find that

Lemma 30.1. The collection {Kf : ‖f‖C(T ) ≤ 1} is equicontinuous. That is, given

s ∈ T and ε > 0 there is a neighborhood U of s such that |Kf(s) −Kf(r)| ≤ ε whenever
r ∈ U and ‖f‖C(T ) ≤ 1.

Since the collection is also uniformly bounded, by the Arzela-Ascoli theorem

Theorem 30.2. The operator K maps the unit ball in C(T ) to a pre-compact set.

Thus integral operators as above have the rather special property of mapping the unit
ball of the Banach space onto a “small subset” of the Banach space. This has many useful
and important consequences.

Compact operators

Definition 30.1. A map C ∈ L(X, Y ) is compact if the image CB1(0) of the unit ball
in X is pre-compact in Y (in the norm topology).

Remark. Recall that a subset S of a complete metric space is pre-compact if its closure
is compact. Equivalently, every sequence in S has a Cauchy subsequence.

Proposition 30.3. If C1 and C2 are pre-compact subsets of a Banach space then

(1) C1 + C2 is pre-compact.
(2) MC1 is pre-compact for any M ∈ L(X, Y ) with Y a Banach space.
(3) the convex hull of C1 is pre-compact.
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Let C(X, Y ) = { compact maps from X → Y }.

Theorem 30.4. C(X, Y ) is closed sub-space of L(X, Y ). Furthermore if M ∈ L(Y, Z)
and N ∈ L(V,X) then MCN ∈ C(V, Z) for any C ∈ C(X, Y ).

Proof. The proof that C(X, Y ) is a subspace is left as an exercise, based on the propo-
sition above, as is the proof that MC is compact if C is. To see that CN is compact,
note that CNB1 ⊂ CB‖N‖, so 1

‖N‖CNB1 is pre-compact and hence so is CN (by (2) of the

proposition).
Finally, suppose Cn → C in L(X, Y ). Let xj be a sequence in the unit ball of X. Let

xj;1 be a subsequence such that C1xj;1 converges as j →∞. By induction construct xj;n for
each n such that

(1) xj;n is a subsequence of xj;n−1

(2) limj Cnxj;n = yn.

It follows that
ym = lim

j
Cmxj;n

for any m ≤ n. Note that ym − yn = limj(Cm −Cn)xj;n, so

‖ym − yn‖ ≤ ‖Cm −Cn‖ .
Thus yn are Cauchy and have a limit y. For each n, let jn be such that

‖yn −Cnxjn;n‖ ≤ ‖Cn −C‖ .
Consider the diagonal sequence xjn;n. Then

‖Cxjn;n − y‖ ≤ ‖C−Cn‖+ ‖Cnxjn;n − yn‖+ ‖yn − y‖ ≤ 3 ‖Cn −C‖ → 0.

Thus Cxjn;n is a convergent subsequence of Cxj and so CB1(0) is compact. �

Let C(X) = C(X,X).

Theorem 30.5. Let C ∈ C(X), let I be the identity map on X, and let T = I−C. Then

(1) NT is finite dimensional.
(2) There is an integer i such that

NTk = NTi for k ≥ i.

(3) ran T is closed.

Proof. Note that x ∈ NT iff x = Tx. Thus the unit ball of NT is contained in TB1(0).
Thus the closed unit ball of NT is compact. So NT is finite dimensional. (See Lecture 5.)

Note that NTk+1 ⊃ NTk , and that each subspace is finite dimensional (since Tk is compact
for any k). Suppose this sequence never stabilizes. By Lemma 5.2 there is then a vector xk
for each k such that

xk ∈ NTk , ‖xk‖ = 1 and ‖xk − x‖ >
1

2
for all x ∈ NTk−1 .

Then, if m < n,
C(xn − xm) = xn −Txn − xm + Txm.

Now Txn, xm,Txm ∈ NTn−1 (since m < n), so

‖Cxn −Cxm‖ ≥
1

2
.
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So Cxn has no Cauchy subsequence, which is a contradiction.
To prove ran T is closed, let yk = Txk and suppose yk → y. We may shift xk as we like

by elements of the NT. So xk may get very large. However, if we consider the distance

dk = inf
u∈NT

‖xk − u‖ ,

from xk to the NT, then I claim we have

sup
k
dk <∞.

Indeed, suppose not. Then, passing to a subsequence so dk → ∞ and choosing uk so
‖xk − uk‖ ≤ 2dk we have

0 = lim
k

yk
dk

= lim
k

T
xk − uk
dk

,

since yk are bounded. As ‖xk − uk‖ /dk ≤ 2 we may pass again to a subsequence to conclude
that

C
xk − uk
dk

converges. Thus

lim
k

xk − uk
dk

= z = lim
k

C
xk − uk
dk

= Cz,

so Tz = 0, that is z ∈ NT. But then ‖xk − uk − dkz‖ ≥ dk so
∥∥∥xk−ukdk

− z
∥∥∥ ≥ 1 contradicting

the convergence derived above. Thus supk dk <∞.
Now since dk are bounded, we may choose uk ∈ NT so that ‖xk − uk‖ ≤ 2 supk dk. Now

pass to a subsequence so that
C(xk − uk)

converges. But then
lim
k

(xk − uk) = y + lim
k

C(xk − uk).

Thus limk(xk − uk) = x exists and y = Tx ∈ ran T. �





LECTURE 31

Fredholm alternative

Reading: §21.1

Theorem 31.1 (Fredholm Alternative). Let C ∈ C(X). Then T = I−C satisfies

dimNT = dim(X/ ran T).

Remark. The result is known as the “Fredholm Alternative” because Fredholm proved
this result in the context of integral operators. The “alternative” is that either one is an
eigenvalue of C, or the equation

y = x−Cx

is uniquely solvable for x for any y.

Corollary 31.2. Let C ∈ C(X). Then a non-zero point λ ∈ C is in the spectrum of C
if and only if λ is an eigenvalue of finite algebraic and geometric multiplicity, where

geometric multiplicity = dimNλI−C

and

algebraic multiplicity = sup
j

dimN(λI−C)j .

Proof. Apply the previous two theorems to the compact map λ−1C. �

Caution: a compact map need not have eigenvalues. The Volterra operator of the last
lecture is an example.

Recall that dimX/Y is the codimension of Y , denoted The identity

dimNM = codim ranM

is valid for any operator M ∈ L(X) if X is finite dimensional. In an infinite dimensional
setting, this identity need not hold even if both sides are finite. If both sides are finite, the
index of M is the difference

ind T = dimNM − codim ranM.

Thus the alternative says that the index of a I−C is zero for C compact.
To prove the theorem we will use the following

Lemma 31.3. Let C ∈ C(X) and suppose Y ⊂ X is an invariant subspace for C, so
CY ⊂ Y . Then

C̃[x] = [cx]

is a compact map from X/Y → X/Y .

Proof. Exercise. �
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Proof of Theorem. First suppose dimNT = 0. We need to show that ran T = X.
If, on the contrary, X1 = ran T is a proper subspace of X. Since T is one-to-one, X2 = TX1

is a proper subspace of X1. By induction, with Xk = TkX, we find that X1 ⊃ X2 ⊃ X3 · · ·
with proper inclusion at every step. Now X1 is closed by Thm 30.5 from last time. Likewise
Xk = TkX and Tk = I−

∑k
j=1

(
k
j

)
(−1)j−1Cj = I− compact, so Xk is closed. Thus, we may

find a sequence of vectors xj such that

xj ∈ Xj , ‖x‖ = 1 , and dist(xj, Xj+1) >
1

2
.

It follows, if m < n, that

‖Cxm −Cxn‖ = ‖xm −Txm − xn + Txn‖ >
1

2
,

since Txm + xn − Txn ∈ Xm+1. Thus Cxn has no Cauchy subsequence, which is a contra-
diction.

If dimNT > 0, then by Thm 30.5 from last time, we have NTi+1 = NTi for i large enough.
Let N = NTi . So N is an invariant subspace for T, and since C = I − T we see that N

is invariant for C as well. Thus C̃ as defined above is a compact map of X/N → X/N .

Consider T̃ = Ĩ− C̃. That, is

T̃[x] = [Tx],

which is well-defined since N is invariant under T . Note that NeT = {0}, since if [x] ∈ NeT
then Tx ∈ N =⇒ x ∈ NTi+1 = NTi = N so [x] = 0. Thus by ran T̃ = X/N . Thus for
every y ∈ X there is x ∈ X and z ∈ N such that

Tx = y + z.

Thus X = ran T +N . Thus

dim(X/ ran T) = dim(N/(N ∩ ran T)).

By finite dimensional linear algebra

dim(N/(N ∩ ran T)) = dimNT. �

Theorem 31.4 (Schauder). C ∈ L(X) is compact if and only if C′ is compact.

Proof. We show C compact =⇒ C′ is compact. The reverse implication follows by
noting that C is the restriction of C′′ to the closed subspace X of X ′′ and applying the
following

Lemma 31.5. Let C be compact on X and let Y ⊂ X be a closed subspace. Then the
restriction of C to Y is a compact map.

Proof. Exerise. �

We must show, if `n ∈ B1(0) ⊂ X ′, that C′`n has a convergent subsequence. Consider
the closure of K = CB1(0) ⊂ X. This is a compact set and on this set

|`n(x)− `n(y)| ≤ ‖x− y‖
since ‖`n‖ ≤ 1. Thus `n |K are equicontinuous, and bounded, so have a convergent subse-
quence by Arzela-Ascoli. That is, passing to a subsequence, we have

lim
n→∞

sup
y∈K
|〈y, `n − f(y)| = 0
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for some cts function f on K. Thus

sup
x∈B1(0)

|〈x,C′`n − f(Cx)| −→ 0.

It follows that `(x) = f(Cx) is a linear functional and the norm limit of C′`n. So C′ is
compact. �

Theorem 31.6 (Fredholm Alternative). Let C ∈ C(X), T = I−C. Then

(1) x ∈ ran T if and only if `(x) = 0 for all ` ∈ NT′.
(2) dimNT = dimNT′ .

Proof. (1) For a general operator T we have

ran T = {x : `(x) = 0 fo all ` ∈ NT′} .
Since ran T is closed (1) follows.

(2) The null space NT′ is isomorphic to the dual of X/ ran T via the pairing

〈[x], `〉 = 〈x, `〉
which is well defined since ` annihlates the ran T. Thus

dimNT′ = codim ran T = dimNT. �
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Spectral Theory of Compact Maps

Theorem 32.1 (F. Riesz). Let X be a complex Banach space and C ∈ C(X). The
spectrum of C is a denumerable or finite set of points whose only accumulation point, if any,
is 0. If dimX =∞ then 0 ∈ σ(C):

σ(C) = {λj} ∪ {0}.
Furthermore,

(1) Each non-zero λj ∈ σ(C) is an eigenvalue of finite algebraic and geometric multi-
plicity.

(2) The resolvent (z−C)−1 has a pole at each non-zero λj: that is, there is nj ≥ 1 such
that

(z − λj)nj〈(z −C)−1x, `〉
is analytic in a neighborhood of λj for every ` ∈ X ′ and x ∈ X.

Proof. We have already seen that any non-zero point of the spectrum is an eigenvalue
of finite multiplicity.

Suppose we have a sequence λn of eigenvalues and eigenvectors

Cxn = λnxn,

with λn 6= λm. Let Yn be the linear space of x1, . . . , xn. Suppose
n∑
j=1

ajxj = 0.

Then
n∑
j=1

ajλ
k
jxj = 0

for all k, so
n∑
j=1

ajp(λj)xj = 0

for all polynomials p. Since the λj are distinct, we may pick a polynomial that vanishes for
all λj except λj0 for example p(λ) =

∏
j 6=j0(λ− λj). Thus aj = 0 for all j, so xj are linearly

independent. It follows that Yn−1 is a proper subspace of Yn.
The implication of this is the same as above: we find a sequence of vectors yn ∈ Yn such

that

‖yn‖ = 1 and ‖yn − y‖ >
1

2
for all y ∈ Yn−1.

Since

yn =
n∑
j=1

a
(n)
j xj

32-1
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we have

Cyn =
n∑
j=1

a
(n)
j λjxj

so

Cyn − λnxn =
n−1∑
j=1

a
(n)
j (λj − λn)xj ∈ Yn−1.

Thus, for n > m,
Cyn −Cym = λnyn − y for some y ∈ Yn−1.

Thus

‖Cyn −Cym‖ ≥
|λn|

2
.

Since any subsequence of Cyn has a Cauchy subsequence, we must have λn → 0. Since λn
was an arbitrary sequence of eigenvalues, it follows that 0 is the only (possible) accumulation
point of eigenvalues. Thus there are only finitely many eigenvalues outside any disk around
the origin. Hence there at most countably many eigenvalues.

It remains to show that the resolvent has poles at λj. Let z be a complex number, then
finding the resolvent u = (z −C)−1x amounts to solving

x = zu−Cu

for x. Suppose z is close to λj. Let N = N(λ−C)i = N(λ−C)i+1 with i sufficiently large. Let C̃

be the quotient map on X/N . Since λj is not an eigenvalue of C̃ (why?), we conclude that

λj − C̃ is invertible. It follows that z − C̃ is invertible for z − λj < ε for some ε > 0 (recall
that the set of invertible maps is open) and∥∥(z −C)−1

∥∥ ≤ const. for |z − λj| < ε.

Thus
z[v]− C̃[v] = [x]

has a unique solution for an equivalence class [v] = v +N with

‖[v]‖ ≤ const. ‖[x]‖ .
Thus given x we may find n ∈ N and v(z) ∈ X such that

(z −C)v(z) = x− n(z).

We may choose v(z) so that ‖v(z)‖ is bounded for |z − λj| < ε. It follows that ‖n(z)‖ is
bounded as well:

‖n(z)‖ ≤ (|z|+ ‖C‖) ‖v(z)‖+ ‖x‖ .
Let us now solve

(z −C)y(z) = n(z)

for y(z) ∈ N to obtain u(z) = v(z) + y(z). This is a linear algebra problem. We know that
N is an invariant subspace for C and that λj is in the spectrum σ(C |N). In fact, λj is the
unique point of the spectrum of C |N . Indeed, (λj −C)i = 0 on N . It follows that∥∥(z −C |N)−1

∥∥ ≤ const.
1

|λ− z|i
.

(It doesn’t really matter for the proof, but yes it is the same i in both spots.) Hence,

‖u(z)‖ ≤ ‖v(z)‖+ ‖y(z)‖ ≤ const.(1 + |z − λj|−i)
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for z close to λj.
Thus (z−λj)i〈(z−C)−1x, `〉 is analytic in {0 < |z−λj| < ε} with a removable singularity

at z = λj. That is 〈(z −C)−1x, `〉 has a pole at λj �

Note that the resolvent may not have a pole at 0. For instance, the Volterra integral
operator has resolvent

(λ− V )−1 =
∞∑
n=0

1

λn+1
V n

for λ 6= 0. This analytic operator valued function has an essential singularity at 0. If one
computes

(λ− V )−1xn =
∞∑
m=0

1

λm+1
V mxn =

∞∑
m=0

1

λm+1

n!

(n+m)!
xn+m

= n!λn−1

∞∑
m=n

1

m!

(x
λ

)m
= n!λn−1ex/λ −

n−1∑
m=0

n!

m!
xmλn−1−m,

then one can see the essential singularity very clearly in the first term. The second term is
regular and has limit

nxn−1 as λ −→ 0.

Interestingly, this is −V −1xn where V −1 is the densely defined left inverse for V , namely
differentiation:

∂xV f(x) = ∂x

∫ x

0

f(y)dy = f(x).
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Homework III

Due: April 30, 2008

This homework assignment deals with elliptic PDE’s. Let Ω ⊂ Rd be an open set with
compact closure. Suppose we are given a measurable function σ(x) on Ω which is bounded
above and below:

0 < a ≤ σ(x) ≤ a−1 <∞ for all x ∈ Ω.

Consider the PDE

∇ · σ(x)∇u(x) = f(x) x ∈ Ω, u = 0 on ∂Ω. (?)

Our goal is to show that this equation has a unique solution u = Sf with S a compact
symmetric operator on L2 and to consider the spectral theory of S.

(1) Show for any f ∈ L2(Ω) that (?) has a unique solution (in the sense of distributions) u
in L2(Ω). (Hint: use Lax Milgram. The solution is outlined in Lecture 16.)

(2) Let Φ(x) be a smooth, non-negative, compactly supported, function on Rd with
∫

Rd Φ(x)dx =
1. Let Ft map L2(Ω) into itself by

Ftf(x) = χΩ(x)

∫
Rd
t−dΦ(

x− y
t

)f(y)dy = χΩ(x)

∫
Rd
t−dΦ(

y

t
)f(x− y)dy,

where we take f ≡ 0 outside Ω.
(a) Use Minkowski’s inequality:(∫

dµ(x)

∣∣∣∣∫ f(x, y)dν(y)

∣∣∣∣2
) 1

2

≤
∫

dν(y)

(∫
dµ(x) |f(x, y)|2

) 1
2

to show that Ft ∈ L(L2(Ω) with ‖Ft‖L2(Ω)→L2(Ω) ≤ 1.

(b) Show also that

sup
x
|Ftf(x)| ≤ Ct−d ‖f‖L2(Ω) .

(Hint: the constant will be proportional to Vol(Ω).)
(c) Show that for f ∈ L2(Ω) and x ∈ Ω

f(x)− Ftf(x) =

∫
Rd
t−dΦ(

y

t
)(f(x)− f(x− y))dy.

(d) Apply Minkowski’s inequality to conclude, if f ∈ C2
c (Ω) then

‖f − Ftf‖L2(Ω) ≤ Ct ‖f‖H1
0 (Ω) , (??)

where

‖f‖2
H1

0 (Ω) =
d∑
j=1

‖∂jf‖2
L2(Ω) .

(Hint: write f(x) − f(x − y) =
∫ 1

0
y · ∇f(x − sy))ds. Make sure you get the factor

of t on the r.h.s!)
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(e) Conclude that (??) holds for f ∈ H1
0 (Ω) with

H1
0 (Ω) = {completion of C∞c (Ω) in the norm ‖f‖2

H1 =
d∑
j=1

‖∂jf‖2
L2}.

(3) Let fn ∈ H1
0 (Ω) be a sequence so that ∂jfn ⇀ vj weakly in L2(Ω) for each j.

(a) Use Lemma 16.1 of Lecture 16 (Lemma 2 of Ch. 7 in Lax) to conclude that fn ⇀ f
weakly in L2(Ω) for some f ∈ H1

0 (Ω) and that ∂jf = vj. (Hint: first use Alaogulu’s
theorem to conclude that fn has a weakly convergent subsequence with a limit f
that satisfies ∂jf = vj for each j. Next show that any other weakly convergent
subsequence must also converge to f . Conclude that fn ⇀ f .)

(b) Show that
Ftfn(x) −→ Ftf(x) as n→∞.

for every x ∈ Ω. Since |Ftfn(x)| ≤ Ct−d ‖fn‖L2(Ω) by (2b) use dominated convergence
and the principle of uniform boundedness to conclude that

‖Ftfn − Ftf‖L2 −→ 0 as n→∞.

(c) Use this result and (??) to conclude that

‖fn − f‖L2 −→ 0 as n→∞.

(d) Combine these to prove

Theorem 32.2 (Rellich). If M ⊂ H1
0 (Ω) with uniformly bounded H1

0 (Ω) norm then
M is pre-compact in L2(Ω).

(4) Returning to the PDE (?), let S : L2(Ω) → L2(Ω) be the map Sf = u where u solves
(?). Show that S is compact. (Hint: see §22.3 where this is done for σ ≡ 1. However, we
have not assumed that Ω has a smooth boundary. But you have just proved the results
needed.)

(5) Show that S is symmetric on L2(Ω). Conclude that there is an ortho-normal basis {φj}
for L2(Ω) consisting of eigenfunctions to the linear operator ∇ · σ(x)∇. That is, there is
a set {φj} such that

span{φj} = L2(Ω) , 〈φj, φk〉L2(Ω) = δi,j,

and
∇ · σ(x)∇φj(x) = λjφj(x).

Show that the eigenvalues λj are real and diverge to ∞. How are they related to the
eigenvalues of S?



Part 9

Compact Linear Maps in Hilbert Space





LECTURE 33

Compact Symmetric Operators

We now specialize to the case in which the Banach space X is a Hilbert space. For
spectral analysis it is useful to consider a complex Hilbert space H, in which case in place
of the transpose it is natural to consider

Definition 33.1. The adjoint of a bounded linear map T ∈ L(H,K) with H and K
Hilbert spaces is the linear map T † ∈ L(K,H) given by

〈T †u, v〉H = 〈u, Tv〉K
for all u ∈ K and v ∈ H.

Recall that, by the Riesz-Frechet theorem the dual of a Hilbert space H is isomorphic to
the Hilbert space itself via the conjugate linear map

u 7→ 〈`u(·) = ·, u〉.
Thus we have

T ′`u = `T †u.

Since the correspondence u 7→ `u is conjugate linear, it follows that

(T + aS)† = T + a?S†.

We also have
(ST )† = T †S†

and
σ(T †) = σ(T )? = {λ? : λ ∈ σ(T )}.

Definition 33.2. A bounded operator T ∈ L(H) is called Hermitian (or symmetric, or
self-adjoint) if T = T †.

Proposition 33.1. If T is Hermitian then

(1) 〈Tu, u〉 is real for all u ∈ H.
(2) If 〈Tu, u〉 = 0 for all u ∈ H then T = 0.
(3) σ(T ) ⊂ R.

Proof. (1) Note that 〈Tu, u〉 = 〈u, Tu〉 = 〈Tu, u〉?. For (2), note that if 〈Tu, u〉 = 0 for
all u then

0 = 〈T (u± iv), u± iv〉 = ±i〈Tv, u〉 ∓ i〈Tu, v〉.
Combining the results we get

0 = 〈Tu, v〉
for all u, v ∈ H. Thus T ≡ 0.

For (3), we need to show Nzu−T = {0} and ran(z − T ) = H, for z ∈ C \ R. Suppose

zu− Tu = 0.

33-1



33-2 33. COMPACT SYMMETRIC OPERATORS

It follows that
z ‖u‖2 − 〈Tu, u〉 = 0.

Since the second term is real we find Im z ‖u‖2 = 0. Thus ‖u‖ = 0 and u = 0. That is,
Nzu−T = {0}.

Similarly, suppose u is perpendicular to ran(z − T ). Then

0 = 〈(z − T )u, u〉,
so ‖u‖ = 0. It follows that ran(z − T ) is dense. To see that ran(z − T ) is closed, note

‖(z − T )u‖2 = 〈(z − T )u, (z − T )u〉
= |z|2 ‖u‖2 + ‖Tu‖2 − z〈u, Tu〉 − z?〈Tu, u〉

= |z|2 ‖u‖2 + ‖Tu‖2 − 2 Re z〈Tu, u〉
= (Im z)2 ‖u‖2 + ‖(Re z − T )u‖2 ≥ (Im z)2 ‖u‖2 .

Thus, if ran(z − T )un → x we find that un is Cauchy. since (z − T ) is bounded we must
have (z − T )u = x for u = limn un. �

Theorem 33.2. Let H be a infinite dimensional separable Hilbert space. If T ∈ L(H) is
Hermitian and compact then there is an orthonormal basis for H consisting of eigenvectors
of T . That is, there is an orthonormal basis {φn}∞n=1 and a sequence of real numbers λn → 0
such that

Tφn = λnφn.

The spectrum σ(T ) = {λn}∞n=1.

Remark. If H is not-separable and T is compact Hermitian then there is a closed
separable subspace Y ⊂ H such that T : Y → Y and

T |Y ⊥ = 0.

Note that we already have σ(H) = {λn} ⊂ R. To proceed let us show first

Lemma 33.3. Let T ∈ C(H). Let λ+ = maxσ(T ) and λ− = inf σ(T ). Then

λ+ = sup
‖u‖=1

〈Tu, u〉 = max
‖u‖=1

〈Tu, u〉

and
λ− = inf

‖u‖=1
〈Tu, u〉 = min

‖u‖=1
〈Tu, u〉.

In particular, if σ(T ) = {0} then T ≡ 0.

Proof. Let us prove the identity for λ+. The identity for λ− follows from the first
applied to −T . Let R = sup‖u‖=1〈Tu, u〉. Note that

〈Tu, u〉 ≤ R ‖u‖2 .

It follows that R ≥ 0 as otherwise |〈Tu, u〉| ≥ |R| ‖u‖2 , so |R| ‖u‖ ≤ ‖Tu‖ , which contradicts
compactness. (Look at Tun with un an orthonormal basis.)

Let un be a sequence of vectors with ‖un‖ ≤ 1 so that 〈Tun, un〉 → R. Passing to a
subsequence, we suppose that un ⇀ u+ and Tun → Tu+ (strongly). It follows that

〈Tun, un〉 → 〈Tu+, u+〉,
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so 〈Tu+, u+〉 = R. Thus the sup is actually a max.
If λ > R then, for ‖u‖ ≤ 1,

‖(λ− T )u‖ ≥ λ− 〈Tu, u〉λ2 ≥ λ−R.
It follows that

‖(λ− T )u‖ ≥ (λ−R) ‖u‖2

for all u. Thus λ > R ≥ 0 is not an eigenvalue of T . It follows that λ+ ≤ R.
If R = 0, we are done as λ+ ≥ 0. On the other hand, if R > 0 then u+ 6= 0, since

R = 〈Tu+, u+. Clearly u+ is a unit vector. Let w ∈ H and consider the function

Fw(t) =
〈T (u+ + tw), u+ + tw〉

‖u+ + tw‖2 .

So Fw is smooth and takes its maximum at 0. Differentiating with respect to t we get

0 = F ′w(0) = 〈Tw, u+〉+ 〈Tu+, w〉 − 〈Tu+, u+〉 [〈w, u+〉+ 〈u+, w〉] .
Thus

0 = F ′w(0) + iF ′iw(0) = 〈Tu+, w〉 −R〈u+, w〉.
Since this holds for any w, we conclude that Tu+ = Ru+, so R ∈ σ(T ).

Finally, note if σ(T ) = {0} then 〈Tu, u〉 = 0 for all u so T ≡ 0 by the proposition proved
above. �

Proof of Theorem. If T ≡ 0 there is nothing to show as any orthonormal basis will
do. If T is not zero, then it has a non-zero eigenvalue λ1 by the lemma. Let the corresponding
eigenvector be u1. If u ⊥ u1 then

〈Tu, u1〉 = λ1〈u, u1〉 = 0,

so Tu ⊥ u1. Thus {u1}⊥ is an invariant subspace for T . Either T is identically zero on {u1}⊥
or it has an eigenvector there. Proceed by induction.

More formally, consider the collection S of closed subspaces Y of H invariant under T
and such that T restricted to Y has an orthonormal basis of eigenvectors. As above Y ⊥ is
invariant under T so either T ≡ 0 on Y ⊥ or T has a non-zero eigenvector there. Partially
order S by inclusion. It follows that any maximal element Y of S has Y ⊥ = {0}. �
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Min-Max

Let us look at the variational characterization of eigenvalues again. We have

λ+ = maxσ(T ) = max
‖u‖≤1

〈Tu, u〉.

and a similar identity at the bottom of the spectrum. As it turns out, one can construct
in this way all of the eigenvalues. Indeed, suppose we are given the largest N − 1 positive
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN−1 > 0 of T (listed according to multiplicity) together with
the corresponding eigenvectors x1, · · · , xN−1. Let

λN = max
u⊥x1,...xN−1, ‖u‖≤1

〈Tu, u〉. (?)

If λN > 0 then λN is an eigenvalue of T , λN ≤ λN−1, and the corresponding maximizer uN
is an eigenvector. If λN = 0 then there are no more positive eigenvalues. (Zero may or may
not be an eigenvalue.) Similarly we can find the negative eigenvalues and corresponding
eigenvectors by minimizing 〈Tu, u〉.

Theorem 34.1 (Min-Max Principle). Let T be a compact Hermitian operator on an
infinite dimensional Hilbert space.

(1) Fischer’s principle: If

αN = max
SN

min
u∈SN , ‖u‖=1

〈Tu, u〉,

where the max is taken over all N dimensional subspaces SN , then α1 ≥ α2 · · · ≥ 0
and the non-zero entries of this sequence are the positive eigenvalues of T listed
according to multiplicity.

(2) Courant’s principle: The above sequence is also given by

αN = min
SN−1

max
u⊥Sn−1. ‖u‖≤1

〈Tu, u〉,

where the max is taken over all N − 1 dimensional subspaces SN−1.

Remark. (1) In finite dimensions, the sequence is no longer non-positive and gives all
the eigenvalues. In infinite dimensions, the sequence αj, being non-positive and decreasing,
is either positive for all j or eventually 0. The zero entries may not represent eigenvalues.

(2) The negative eigenvalues µ1 ≤ µ2 ≤ · < 0 can of course be found as

µN = min
SN

max
u∈SN , ‖u‖=1

〈Tu, u〉 = max
SN−1

min
u⊥SN−1, ‖u‖≤1

〈Tu, u〉.

Proof. First note that αN ≥ 0. Indeed, for any δ > 0 there are only finitely many
eigenvalues λ < −δ (counted according to multiplicity). Thus the orthogonal complement of
the corresponding eigenvectors is infinite dimensional. On this subspace we have 〈Tu, u〉 ≥
−δ ‖u‖2, so αN ≥ −δ.
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Let Axn = λnxn be the positive eigenvalues and eigen-vectors listed according to mul-
tiplicity with λ1 ≥ λ2 ≥ · · · > 0. (The sequence may terminate.) If there are M positive
eigenvalues and N > M , let SN be an N -dimensional subspace. By finite dimensional linear
algebra, we can find a unit vector u ∈ SN perpendicular to x1, . . . , xM :

〈u, xn〉 = 0, n = 1, . . . ,M.

By (?) we must have 〈Tu, u〉 ≤ 0 so αN ≤ 0. On the other hand αN ≥ 0 so αN = 0.
If there are at least N positive eigenvalues, then with SN = span(x1, . . . xN) we have

min
u∈SN ,‖u‖=1

〈Tu, u〉 = λN ,

so αN ≥ λN . On the other hand if SN is any N dimensional subspace then as above we may
find a unit vector u ∈ SN which is perpendicular to the first N − 1 eigenvectors. By (?),
〈Tu, u〉 ≤ λN . Thus αN ≤ λN .

Turning now to Courant’s principle, let

βN = min
SN−1

max
u⊥SN−1, ‖u‖≤1

〈Tu, u〉.

Since S⊥N−1 is infinite dimensional and T is compact it follows that

max
u⊥SN−1, ‖u‖≤1

〈Tu, u〉 ≥ 0.

Thus βN ≥ 0. Also, note that

βN ≤ min
SN−1

min
SN−2⊂SN−1

max
u⊥SN−2, ‖u‖≤1

〈Tu, u〉 = βN−1.

First suppose there are at least N − 1 positive eigenvalues. It follows from (?) that
βN ≤ λN = αN , since x1, . . . , xN−1 span an N − 1 dimensional subspace.

If λN = 0, it follows that βM = 0 = αM for M ≥ N .
On the other hand, suppose there are at least N positive eigenvalues and let SN−1 be an

arbitrary N −1 dimensional subspace. I claim we may find a vector in the subspace spanned
by x1, . . . xN perpendicular to SN−1. Indeed, if yj, j = 1, . . . , N − 1, is an orthonormal basis
for SN−1 then we must solve

N∑
k=1

〈xk, yj〉ak = 0,

for all j. Since N − 1 < N the matrix 〈xk, yj〉 has a non-trivial null space, and the resulting
solution u =

∑
k akxk is perpendicular to SN−1. But then

〈Tu, u〉 =
N∑
k=1

|ak|2λk ≥ λN ‖u‖2 .

Thus βN ≥ λN = αN . �

The min-max principle is incredibly powerful. It is certainly one of the most important
results in applications of functional analysis. Here is an example of what we can do with it:

Definition 34.1. Let A,BL(H) be Hermitian. We say that A ≥ B if

〈Au, u〉 ≥ 〈Bu, u〉 ∀u ∈ H.

Remark. This is a partial order on the set of Hermitian operators.
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Theorem 34.2. Let T, S ∈ C(H) be Hermitian compact operators with T ≥ S. If S has
at least N positive eigenvalues λ+

1 ≥ · · · ≥ λ+
N > 0 then T has at least N positive eigenvalues

µ+
1 ≥ · · · ≥ µ+

N > 0 and
µ+
N ≥ λ+

N .

Similarly, if T has at least N negative eigenvalues µ−1 ≤ · · · ≤ µ−N < 0 then S has at least N
negative eigenvalues λ−1 ≤ · · · ≤ λ−N < 0 and

λ−N ≤ µ−N .

This theorem is an easy consequence of min-max. It is immediate if S and T have the
same eigenvectors, but that is not at all necessary for the relation S ≤ T . For instance(

1 0
0 0

)
≤
(

2 1
1 1

)
.

Similarly we have

Theorem 34.3. Let T ∈ C(H) be compact Hermitian. If T ≥ 0 then all eigenvalues of
T are ≥ 0.

In fact, we have

Theorem 34.4. Let T ∈ L(H) be Hermitian. If T ≥ 0 then σ(T ) ⊂ [0,∞).

Proof. Let λ > 0. Then

‖(T + λ)u‖2 = ‖Tu‖2 + 2λ〈u, Tu〉+ λ2 ‖u‖2 ≥ λ2 ‖u‖2 .

It follows that NT+λ = {0} and that ran(T + λ) is closed. Since ran(T + λ)⊥ = NT+λ = {0}
it follows that ran(T +λ) = H. Thus T +λ is one-to-one, onto and bounded. By the inverse
mapping theorem (27.5 in these notes) (T + λ)−1 is bounded. Thus −λ 6∈ σ(T ). �





LECTURE 35

Functional calculus and polar decomposition

The spectral theorem states that a compact Hermitian operator T is of the form:

T =
∞∑
n=1

λn〈·, φn〉φn. (?)

Here λn are the eigenvalues and φn is an orthonormal basis. The notation indicates that

Tφ =
∞∑
n=1

λn〈φ, φn〉φn.

In fact, since λn → 0 the sum in (?) is absolutely convergent:∥∥∥∥∥T −
N∑
n=1

λn〈·, φn〉

∥∥∥∥∥ = sup
n>N
|λn| −→ 0.

If f : σ(T )→ C is a bounded function we define

f(T ) =
∞∑
n=1

f(λn)〈·, φn〉φn,

so

f(T )φ =
∞∑
n=1

f(λn)〈φ, φn〉φn.

It is an easy calculation to see that if f(x) = p(x) is a polynomial in x then f(T ) defined
this way agrees with plugging T into the polynomial. For instance,

∞∑
n=1

λ2
n〈φ, φn〉φn =

∞∑
n=1

λn〈
∞∑
m=1

λm〈φ, φm〉φm, φn〉 = T 2φ,

by the pairwise orthogonality of φm. The map f 7→ f(T ) is called the functional calculus for
T and has the following properties:

Theorem 35.1. Let T be a compact Hermitian operator. To every bounded function
f : σ(T )→ C we assign a unique operator, f(T ), such that

(1) f(σ) ≡ 1 =⇒ f(T ) = I.
(2) f(σ) = σ =⇒ f(T ) = T .
(3) The map f 7→ f(T ) is an injective homomorphism of the ring of bounded functions

on σ(T ) into the L(H):

(f + g)(T ) = f(t) + g(T ), (fg)(T ) = f(T )g(T ), and f(T ) ≡ 0 iff f ≡ 0 on σ(T ).

(4) f(T )† = f ?(T ).
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(5) The map is an isometry:

‖f‖∞ = sup
λ∈σ(T )

|f(λ)| = ‖f(T )‖ .

This map has the properties

(6) If f : σ(T )→ R then f(T ) is Hermitian.
(7) If f : σ(T )→ [0,∞) then f(T ) ≥ 0.
(8) If f : σ(T )→ {|z| = 1} then f(T ) is a unitary map, that is an isometry of H onto

H.
(9) If limλ→0 f(λ) = f(0) = 0 then f(T ) is compact.

Remark. Properties (3-5) show that the map f 7→ f(T ) is an isomorphism of C?

algebras, something we haven’t defined yet but that we will see in the fall.

Proof. We already defined the map we will show it is unique in a moment. It is clear
that (1) and (2) hold. It is easy to see that (f + g)(T ) = f(T ) + g(T ) and the argument
given for T 2 above extends to a product fg. Thus (3) holds. To see that (4) holds note that

〈f(T )†u, v〉 = 〈u, f(T )v〉 =

〈
u,
∑
n

f(λn)?〈v, φn〉φn

〉

=
∑
n

f(λn)?〈u, φn〉〈φn, v〉 =

〈∑
n

f(λn)?〈u, φn〉φn, v〉

〉
= 〈f ?(T )u, v〉.

Since

‖f(T )u‖2 =
∑
n

|f(λn)|2 |〈u, φn〉|2 ≤ ‖f‖∞ ‖u‖
2

and

f(T )φn = f(λn)φn,

(5) follows. (6) and (7) are easy calculations. To see (8) note that if |f(x)|2 = 1 then

‖f(T )u‖2 =
∑
n

|〈u, φn〉|2 = ‖u‖2 .

(9) is an easy exercise.
Finally to see that the map is unique, note that (1), (2), and (3) specify the map for

polynomials p(x). Since T is compact, σ(T ) is discrete away from 0. Thus a bounded map
on σ(T ) is continuous if and only if it is continuous at 0. Thus (5) and Stone-Weierstrass
imply that the map for polynomials extends uniquely to bounded functions continuous at 0.
In fact the map is uniquely defined on all bounded functions, but we will defer the proof of
this to next term. �

Corollary 35.2. If T ≥ 0 and is compact Hermitian then there is a unique positive

square root of T :
√
T ≥ 0 and

√
T

2
= T .

The square root is very useful as it allows us to define

Definition 35.1. Let T be a compact operator on a Hilbert space H. The absolute

value of T , denoted |T |, is the operator
√
T †T .
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The absolute value |T | is compact (why?) so it has eigenvalues, which are all non-negative
since |T | ≥ 0. The eigenvalues of |T | are called the singular values of T . Note that

‖Tφ‖2 = 〈φ, T †Tφ〉 = 〈φ, |T |2φ〉 = ‖|T |φ‖2 .

It follows that the map |T |φ 7→ Tφ defined on the range of |T | is a linear isometry. This
extends to the closure of ran |T |. Let this map be denoted U and define U to be zero on
ran |T |⊥ = N|T | = NT . Note that

T = U |T |.

Theorem 35.3 (Polar decomposition). Every compact operator T on a Hilbert space H
may be factored, as

T = UA

with A ≥ 0 and U †U |ranA= I. The map A = |T | and U is uniquely determined if we specify
U ≡ 0 on ranA⊥.

Corollary 35.4. Any compact operator T on a Hilbert space has a singular value
decomposition

T =
∞∑
n=1

µn〈·, φn〉ψn,

with µn ≥ 0, µn → 0 and φn, ψn (possibly distinct) orthonormal sequences.

Proof. Let µn, φn be the eigenvalues/vectors of |T |. Let ψn = Uφn with T = U |T |. �

In fact, the functional calculus, square root and polar decomposition extend to non-
compact operators. These are some theorems we will prove next term:

Theorem 35.5. Every positive operator A ≥ 0 on a Hilbert space has a unique positive
square root.

Theorem 35.6 (Polar Decomposition). Every operator T ∈ L(H) may be factored as

T = UA

with A ≥ 0 and U †U |ranA= I. The map A = |T | =
√
T †T and U is uniquely determined if

we specify U ≡ 0 on ranA⊥ = NT .

Theorem 35.7 (Spectral Theorem: functional calculus version). To every self adjoint
operator T ∈ L(H) there is associated a unique injective C? homomorphism from C(σ(T ))→
L(H) with the properties (1)-(8) above. Conversely, given any compact set σ ⊂ R and an
injective C? homomorphism with these properties there is a self adjoint operator T so that
the homomorphism is realized as f 7→ f(T ).
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