Minimal superadditive functions over an obstacle

Paata Ivanisvili

2014

Lecture
 Definitions:

Let \(a = a_j = (a_j^1, ..., a_j^n) : \mathbb{N} \rightarrow \mathbb{R}^n \).

where \(a_j \) is a finite vector sequence of \(j \) (after some \(j \) all components are zero).
Definitions:

Let
\[a = a_j = (a^1_j, ..., a^n_j) : \mathbb{N} \to \mathbb{R}^n. \]
where \(a_j \) is a finite vector sequence of \(j \) (after some \(j \) all components are zero). **Total value** is called the following vector

\[\bar{a} = \sum a_j = (\sum a^1_j, ..., \sum a^n_j) \]
We fix $\Omega \subset \mathbb{R}^n$
We fix $\Omega \subseteq \mathbb{R}^n$.

Definition

\[
\Omega(\mathbb{N}) \overset{\text{def}}{=} \{ a : a_j \in \Omega \}
\]
We fix $\Omega \subseteq \mathbb{R}^n$

Definition

$$\Omega(\mathbb{N}) \overset{\text{def}}{=} \{a : a_j \in \Omega\}$$

We require that $\Omega(\mathbb{N})$ contains zero sequence.
We fix $\Omega \subseteq \mathbb{R}^n$

Definition

$$\Omega(\mathbb{N}) \overset{\text{def}}{=} \{ a : a_j \in \Omega \}$$

We require that $\Omega(\mathbb{N})$ contains zero sequence. **Examples:**
Let $H : \Omega \to \mathbb{R}$ and $m : \Omega \to \mathbb{R}^k$ such that $H(0) = 0$ and $m(0) = 0$
Let $H : \Omega \to \mathbb{R}$ and $m : \Omega \to \mathbb{R}^k$ such that $H(0) = 0$ and $m(0) = 0$

Our task is to find the function

$$B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum H(a_j), \sum m(a_j) = x \right\}$$
Let $H : \Omega \to \mathbb{R}$ and $m : \Omega \to \mathbb{R}^k$ such that $H(0) = 0$ and $m(0) = 0$
Our task is to find the function

$$B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum H(a_j), \sum m(a_j) = x \right\}$$
Theorem 1

Let

\[B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum H(a_j), \sum m(a_j) = x \right\}. \]

Then

1. \(B(x) \) is defined on the set \(\sum_{m(\Omega)} \).
2. \(B(m(y)) \geq H(y) \) for all \(y \in \Omega \).
3. \(B(x) \) is superadditive.
4. \(B(x) \) is minimal among those who satisfy conditions 1, 2, 3.

Paata Ivanisvili
Superadditive function
Let
\[B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum H(a_j), \sum m(a_j) = x \right\}. \]

Then

1. \(B(x) \) is defined on the set \(\sum \infty m(\Omega) \).
2. \(B(m(y)) \geq H(y) \) for all \(y \in \Omega \).
3. \(B(x) \) is superadditive.
4. \(B(x) \) is minimal among those who satisfy conditions 1, 2, 3.
Lemma

Let

\[B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum H(a_j), \sum m(a_j) = x \right\}. \]

Then

1. \(B(x) \) is defined on the set \(\sum \infty m(\Omega) \).
Lemma

Let

\[B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum H(a_j), \sum m(a_j) = x \right\}. \]

Then

1. \(B(x) \) is defined on the set \(\sum \infty m(\Omega) \).
2. \(B(m(y)) \geq H(y) \) for all \(y \in \Omega \).
Theorem 1

Lemma

Let

\[B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum H(a_j), \sum m(a_j) = x \right\}. \]

Then

1. \(B(x) \) is defined on the set \(\sum_{\infty} m(\Omega) \).
2. \(B(m(y)) \geq H(y) \) for all \(y \in \Omega \).
3. \(B(x) \) is superadditive.
Lemma

Let

\[B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum H(a_j), \sum m(a_j) = x \right\}. \]

Then

1. \(B(x) \) is defined on the set \(\sum_{\infty} m(\Omega) \).
2. \(B(m(y)) \geq H(y) \) for all \(y \in \Omega \).
3. \(B(x) \) is superadditive.
4. \(B(x) \) is minimal among those who satisfy conditions 1,2,3.
1. Dom $B = \sum_{1}^{\infty} m(\Omega)$

Proof.
Proof, domain, item 1

1. $\text{Dom } B = \sum_{\Omega}^{\infty} m(\Omega)$

Proof.

$\text{Dom } B \subseteq \sum_{\Omega}^{\infty} m(\Omega)$.
1. $\text{Dom } B = \sum_{\Omega}^{\infty} m(\Omega)$

Proof.

$\text{Dom } B \subset \sum_{\Omega}^{\infty} m(\Omega).$

$m(a_j) \in m(\Omega) \subset \sum_{\Omega}^{\infty} m(\Omega), \forall j.$
1. \(\text{Dom } B = \sum_{\infty} m(\Omega) \)

Proof.

\(\text{Dom } B \subset \sum_{\infty} m(\Omega). \)

\(m(a_j) \in m(\Omega) \subset \sum_{\infty} m(\Omega), \forall j. \Rightarrow \sum m(a_j) \in \sum_{\infty} m(\Omega). \)
1. Dom $B = \sum_{\infty} m(\Omega)$

Proof.

$\text{Dom } B \subset \sum_{\infty} m(\Omega)$.

$m(a_j) \in m(\Omega) \subset \sum_{\infty} m(\Omega), \ \forall j. \ \Rightarrow \ \sum m(a_j) \in \sum_{\infty} m(\Omega)$.

$\sum_{\infty} m(\Omega) \subset \text{Dom } B$.
1. \(\text{Dom } B = \sum_{\omega} m(\omega) \)

Proof.

\(\text{Dom } B \subset \sum_{\omega} m(\omega). \)

\(m(a_j) \in m(\omega) \subset \sum_{\omega} m(\omega), \forall j. \implies \sum m(a_j) \in \sum_{\omega} m(\omega). \)

\(\sum_{\omega} m(\omega) \subset \text{Dom } B. \ x \in \sum_{\omega} m(\omega), \implies x = \sum_{j=1}^{N} m(a_j), a_j \in \Omega \)
2. $B(m(y)) \geq H(y)$ for all $y \in \Omega$.
2. $B(m(y)) \geq H(y)$ for all $y \in \Omega$.

Proof.

We recall that

$$B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum H(a_j), \sum m(a_j) = x \right\}.$$
2. $B(m(y)) \geq H(y)$ for all $y \in \Omega$.

Proof.

We recall that

$$B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum H(a_j), \sum m(a_j) = x \right\}.$$

Set $a_1^* = y$ and $a_j^* = 0$ for $j \geq 2$.
2. \(B(m(y)) \geq H(y) \) for all \(y \in \Omega \).

Proof.

We recall that

\[
B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum H(a_j), \sum m(a_j) = x \right\}.
\]

Set \(a_1^* = y \) and \(a_j^* = 0 \) for \(j \geq 2 \). Then \(\sum m(a_j^*) = m(y) \).
2. \(B(m(y)) \geq H(y) \) for all \(y \in \Omega \).

Proof.

We recall that

\[
B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum H(a_j), \sum m(a_j) = x \right\}.
\]

Set \(a_1^* = y \) and \(a_j^* = 0 \) for \(j \geq 2 \). Then \(\sum m(a_j^*) = m(y) \). Thus

\[
B(m(y)) = \sup_{a \in \Omega(\mathbb{N}): \sum m(a_j) = m(y)} \sum H(a_j) \geq \sum H(a_j^*) = H(y)
\]
3. $B(x + y) \geq B(x) + B(y)$
3. $B(x + y) \geq B(x) + B(y)$

Proof.

$\exists a, b \in \Omega(\mathbb{N})$ such that $\sum m(a_j) = x$, $\sum m(b_j) = y$ and

$$\sum H(a_j) > B(x) - \varepsilon, \quad \sum H(b_j) > B(y) - \varepsilon.$$
3. $B(x + y) \geq B(x) + B(y)$

Proof.

$\exists a, b \in \Omega(\mathbb{N})$ such that $\sum m(a_j) = x$, $\sum m(b_j) = y$ and

$$\sum H(a_j) > B(x) - \varepsilon, \quad \sum H(b_j) > B(y) - \varepsilon.$$

Take $c = a \bullet b$ (concatenation).
3. \(B(x + y) \geq B(x) + B(y) \)

Proof.

\[\exists a, b \in \Omega(\mathbb{N}) \text{ such that } \sum m(a_j) = x, \sum m(b_j) = y \text{ and } \]

\[\sum H(a_j) > B(x) - \varepsilon, \quad \sum H(b_j) > B(y) - \varepsilon. \]

Take \(c = a \cdot b \) (concatenation). Then \(c \in \Omega(\mathbb{N}) \),
3. $B(x + y) \geq B(x) + B(y)$

Proof.

$\exists a, b \in \Omega(\mathbb{N})$ such that $\sum m(a_j) = x$, $\sum m(b_j) = y$ and

$$\sum H(a_j) > B(x) - \varepsilon, \quad \sum H(b_j) > B(y) - \varepsilon.$$

Take $c = a \bullet b$ (concatenation). Then $c \in \Omega(\mathbb{N})$, $\sum m(c_j) = \sum m(a_j) + \sum m(b_j) = x + y$
3. $B(x + y) \geq B(x) + B(y)$

Proof.

$\exists a, b \in \Omega(\mathbb{N})$ such that $\sum m(a_j) = x$, $\sum m(b_j) = y$ and

$$\sum H(a_j) > B(x) - \varepsilon, \quad \sum H(b_j) > B(y) - \varepsilon.$$

Take $c = a \bullet b$ (concatenation). Then $c \in \Omega(\mathbb{N})$, $\sum m(c_j) = \sum m(a_j) + \sum m(b_j) = x + y$

$$B(x + y) \geq \sum H(c_j) = \sum H(a_j) + \sum H(b_j) > B(x) + B(y) - \varepsilon$$
4. B is minimal among functions with properties 1,2,3.
4. \(B \) is minimal among functions with properties 1,2,3.

Proof. Let \(G \) satisfies these properties 1,2,3.
4. B is minimal among functions with properties 1,2,3.

Proof.

Let G satisfies these properties 1,2,3. Let’s recall

1. $G(x)$ is defined on the set $\sum_{m}^{\infty} m(\Omega)$.

4. B is minimal among functions with properties 1,2,3.

Proof.

Let G satisfies these properties 1,2,3. Let’s recall

1. $G(x)$ is defined on the set $\sum_{m=1}^{\infty} m(\Omega)$.
2. $G(m(y)) \geq H(y)$ for all $y \in \Omega$.

We are done.
4. B is minimal among functions with properties 1,2,3.

Proof.

Let G satisfies these properties 1,2,3. Let's recall

1. $G(x)$ is defined on the set $\sum_{\infty}^\infty m(\Omega)$.
2. $G(m(y)) \geq H(y)$ for all $y \in \Omega$.
3. $G(x)$ is superadditive.
4. B is minimal among functions with properties 1,2,3.

Proof.

Let G satisfies these properties 1,2,3. Let’s recall

1. $G(x)$ is defined on the set $\sum^{\infty} m(\Omega)$.
2. $G(m(y)) \geq H(y)$ for all $y \in \Omega$.
3. $G(x)$ is superadditive.

Then $\forall a \in \Omega(\mathbb{N})$

$$\sum H(a_j) \leq \sum G(m(a_j)) \leq G \left(\sum m(a_j) \right) = G(x)$$
4. B is minimal among functions with properties 1,2,3.

Proof.

Let G satisfies these properties 1,2,3. Let’s recall

1. $G(x)$ is defined on the set $\sum^\infty m(\Omega)$.
2. $G(m(y)) \geq H(y)$ for all $y \in \Omega$.
3. $G(x)$ is superadditive.

Then $\forall a \in \Omega(\mathbb{N})$

$$\sum H(a_j) \leq \sum G(m(a_j)) \leq G\left(\sum m(a_j)\right) = G(x)$$

We are done.
Item 2. $B(m(y)) \geq H(y), \forall y \in \Omega \iff$
Item 2. \(B(m(y)) \geq H(y), \forall y \in \Omega \iff B(x) \geq \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega). \)
Item 2. $B(m(y)) \geq H(y), \forall y \in \Omega \iff B(x) \geq \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega)$. We introduce an obstacle $R(x) \overset{\text{def}}{=} \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega)$, then
Remarks

Item 2. \(B(m(y)) \geq H(y), \forall y \in \Omega \iff \)
\(B(x) \geq \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega). \) We introduce an
obstacle \(R(x) \overset{\text{def}}{=} \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega), \) then
\[
B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum R(m(a_j)), \sum m(a_j) = x \right\}.
\]
Remarks

- Item 2. \(B(m(y)) \geq H(y), \forall y \in \Omega \iff B(x) \geq \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega).\) We introduce an obstacle \(R(x) \overset{\text{def}}{=} \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega),\) then

\[
B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum R(m(a_j)), \sum m(a_j) = x \right\}.
\]
Item 2. \(B(m(y)) \geq H(y), \forall y \in \Omega \iff B(x) \geq \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega) \). We introduce an obstacle \(R(x) \overset{\text{def}}{=} \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega) \), then

\[
B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum R(m(a_j)), \sum m(a_j) = x \right\}.
\]

If \(\sum_{\infty} m(\Omega) = m(\Omega) \) and \(R(x) \) is superadditive, then

\[
B(x) = R(x), \forall x \in m(\Omega)
\]

If \(B \) is homogeneous of degree 1, and it is defined on the convex cone then it is minimal concave function over an obstacle.
Item 2. \(B(m(y)) \geq H(y), \forall y \in \Omega \iff B(x) \geq \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega). \) We introduce an obstacle \(R(x) \overset{\text{def}}{=} \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega), \) then

\[
B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum R(m(a_j)), \sum m(a_j) = x \right\}.
\]

If \(\sum_{\infty} m(\Omega) = m(\Omega) \) and \(R(x) \) is superadditive, then \(B(x) = R(x), \forall x \in m(\Omega) \)

If \(B \) is homogeneous of degree 1, and it is defined on the convex cone then it is minimal concave function over an obstacle. (Cauchy,
Item 2. \(B(m(y)) \geq H(y), \forall y \in \Omega \iff B(x) \geq \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega). \) We introduce an obstacle \(R(x) \overset{\text{def}}{=} \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega), \) then

\[
B(x) = \sup_{a \in \Omega(N)} \left\{ \sum R(m(a_j)), \sum m(a_j) = x \right\}.
\]

If \(\sum \infty m(\Omega) = m(\Omega) \) and \(R(x) \) is superadditive, then \(B(x) = R(x), \forall x \in m(\Omega) \)

If \(B \) is homogeneous of degree 1, and it is defined on the convex cone then it is minimal concave function over an obstacle. (Cauchy, Holder,
Item 2. $B(m(y)) \geq H(y), \forall y \in \Omega \iff B(x) \geq \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega)$. We introduce an obstacle $R(x) \overset{\text{def}}{=} \sup_{y \in m^{-1}(x)} H(y), \forall x \in m(\Omega)$, then

$$B(x) = \sup_{a \in \Omega(\mathbb{N})} \left\{ \sum R(m(a_j)), \sum m(a_j) = x \right\}.$$

If $\sum_{\infty} m(\Omega) = m(\Omega)$ and $R(x)$ is superadditive, then $B(x) = R(x), \forall x \in m(\Omega)$

If B is homogeneous of degree 1, and it is defined on the convex cone then it is minimal concave function over an obstacle. (Cauchy, Holder, Minkowski)
On the examples of classical inequalities we saw how some functions B solve the problems.
On the examples of classical inequalities we saw how some functions B solve the problems.

We saw a little trace of the Bellman function technique which solves these questions.
On the examples of classical inequalities we saw how some functions B solve the problems.

We saw a little trace of the Bellman function technique which solves these questions and which answers on the following questions:
On the examples of classical inequalities we saw how some functions B solve the problems.

We saw a little trace of the Bellman function technique which solves these questions and which answers on the following questions:

- Which function solves which problem?
On the examples of classical inequalities we saw how some functions B solve the problems.

We saw a little trace of the Bellman function technique which solves these questions and which answers on the following questions:

- Which function solves which problem?
- Which problem can be solved by which function?
On the examples of classical inequalities we saw how some functions B solve the problems.

We saw a little trace of the Bellman function technique which solves these questions and which answers on the following questions:

Which function solves which problem?

Which problem can be solved by which function?

Thank you for your attention!