Integration with several variables.

Review: Integral of a single variable function

Definition
The definite integral of a function $f : [a, b] \rightarrow \mathbb{R}$, in the interval $[a, b]$ is the number

$$
\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x,
$$

where $x_i^* \in [x_{i-1}, x_i]$ is called a sample point, while {x_i} is a partition in $[a, b]$, $i = 1, \ldots, n$, and with $x_0 = a$, $x_n = b$, and

$$
\Delta x = \frac{b-a}{n}.
$$

The integral as an area.

The sum $S_n = \sum_{i=1}^n f(x_i^*) \Delta x$ is called a Riemann sum. Then,

$$
\int_a^b f(x) \, dx = \lim_{n \to \infty} S_n.
$$

The integral $\int_a^b f(x) \, dx$ is the area in between the graph of f and the horizontal axis.

Review: volume by slicing or rotation.

--- single variable

General problem: find the volume below a surface over a 2-D region.

Simple case: rectangular region.

Partition "P": Divide $[a, b]$ into n subintervals:

$a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$

ith interval: $[x_{i-1}, x_i]$, $i = 1, 2, \ldots, n$

Riemann Sum:

$$
S_p = \sum_{i=1}^n A(p_i)(x_i - x_{i-1}) = \sum_{i=1}^n A(p_i)\Delta x_i
$$

: Sum Riemann
, 2, 1], , [: interval
: lssubinterva into Divide : "Partition
\text{Interval}
\Delta x
\text{Volume}
\text{Area}
\text{Rectangle}
\text{Integral}
\text{Volume}
\text{Integration}
\text{Rectangular}
\text{Region}
\text{Sum}
\text{Riemann}
\text{Limits}
\text{Definite}
\text{Integral}
\text{Evaluation}
\text{Integral}
Double integrals on rectangles

Definition

The double integral of a function \(f : R \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) in the rectangle \(R = [a, b] \times [c, d] \) is the number

\[
\iint_R f(x, y) \, dx \, dy = \lim_{n \to \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f(x_i^*, y_j^*) \Delta x \Delta y
\]

where \(x_i^* \in [x_i, x_{i+1}] \)

\(y_j^* \in [y_j, y_{j+1}] \), are sample points,

while \(\{x_i\} \) and \(\{y_j\} \),

\(i, j = 0, \ldots, n \) are partitions of the intervals \([a, b]\) and \([c, d]\), and

\[
\Delta x = \frac{(b-a)}{n}, \quad \Delta y = \frac{(d-c)}{n}
\]

The double integral as a volume

The sum

\[
S_n = \lim_{n \to \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f(x_i^*, y_j^*) \Delta x \Delta y
\]

called a Riemann sum. Then,

\[
\iint_R f(x, y) \, dx \, dy = \lim_{n \to \infty} S_n
\]

The integral \(\iiint_R f(x, y) \, dx \, dy \) is the volume above \(R \) and below the graph of \(f \).

Idea of Fubini’s theorem

Computing each slice by integration with single variable
Fubini Theorem on rectangular domains

Theorem
If \(f : R \subseteq \mathbb{R}^2 \rightarrow \mathbb{R} \) is continuous in \(R = [a_0, a_1] \times [b_0, b_1] \), then
\[
\int \int_R f(x, y) \, dx \, dy = \int_{a_0}^{a_1} \left[\int_{b_0}^{b_1} f(x, y) \, dy \right] \, dx.
\]
\[
= \int_{b_0}^{b_1} \left[\int_{a_0}^{a_1} f(x, y) \, dx \right] \, dy.
\]

Remark: Fubini's Theorem: The order of integration can be switched in double integrals of continuous functions on a rectangle.

Notation: The double integral is also written as
\[
\int \int_R f(x, y) \, dx \, dy = \int_{a_0}^{a_1} \int_{b_0}^{b_1} f(x, y) \, dx \, dy.
\]

Example
Use Fubini's Theorem to compute the double integral
\[
\int \int_R f(x, y) \, dx \, dy = \int_0^3 \int_0^2 (xy^2 + 2x^2y^3) \, dx \, dy
\]
where \(f(x, y) = xy^2 + 2x^2y^3 \), and \(R = [0, 2] \times [1, 3] \). Integrate first in \(x \), then in \(y \).

Solution: Since \(x \in [0, 2] \) and \(y \in [1, 3] \),
\[
I = \int_0^3 \int_0^2 (xy^2 + 2x^2y^3) \, dx \, dy.
\]

We compute the interior integral in \(x \) first, keeping \(y \) constant. After that we compute the integral in \(y \).

Solution: We compute the integral in \(x \) first, keeping \(y \) constant.
\[
I = \int_0^3 \int_0^2 (xy^2 + 2x^2y^3) \, dx \, dy.
\]

Thus,
\[
I = \int_0^3 \left[\int_0^2 (xy^2 + 2x^2y^3) \, dx \right] \, dy,
\]
\[
= \int_0^3 \left[\frac{y^2}{2} x^2 \bigg|_0^2 + \frac{2y^3}{3} x^3 \bigg|_0^2 \right] \, dy,
\]
\[
= \frac{y^2}{2} \left[\frac{8}{3} \right] + \frac{2y^3}{3} \left[\frac{8}{3} \right],
\]
\[
= \frac{26}{3} + \frac{4}{3} \cdot 80 = \frac{372}{3}.
\]
Solution: Integrate first in y, then in x.

\[
I = \int_R f(x, y) \, dy = \int_1^3 \int_0^1 (xy^2 + 2x^2y^3) \, dy \, dx
\]

\[
I = \int_0^1 \left[\int_1^3 (xy^2 + 2x^2y^3) \, dy \right] \, dx.
\]

\[
I = \int_0^1 \left[\frac{1}{3} (x^3) + \frac{2}{4} (x^4) \right] \, dx.
\]

\[
= \int_0^3 \left[\frac{26}{3} x + 40x^2 \right] \, dx = \frac{26}{3} x^2 + 40 \frac{1}{3} x^3.
\]

\[
I = \frac{26}{3} (2) + 40 \frac{8}{3} = \frac{372}{3}.
\]

A particular case of Fubini's Theorem

Corollary

If the continuous function $f: R \subset R^2 \to R$ satisfies that

\[
f(x, y) = g(x) h(y),
\]

then the double integral of function f in the rectangle $R = [a_0, x_1] \times [y_0, y_2]$ is given by

\[
\int_{a_0}^{x_1} \int_{y_0}^{y_2} g(x) h(y) \, dy \, dx = \left(\int_{a_0}^{x_1} g(x) \, dx \right) \left(\int_{y_0}^{y_2} h(y) \, dy \right).
\]

Remark: In the case that $f(x, y)$ is a product of two functions g, h, with $g(x)$ and $h(y)$, then the double integral of f is also a product of the integral of g times the integral of h.

Example

Compute the double integral of $f(x, y) = \frac{1 + x^2}{1 + y^2}$ in the rectangular region $R = [0, 2] \times [0, 1]$.

Solution: $I = \int_R f(x, y) \, dx \, dy = \int_0^2 \int_0^1 \frac{1 + x^2}{1 + y^2} \, dy \, dx$.

\[
I = \left[\int_0^2 \frac{1}{1 + y^2} \right] \left[\int_0^1 (1 + x^2) \, dy \right].
\]

\[
I = \left(x^2 + \frac{1}{3} x^3 \right) \left(\text{arctan}(y) \right) \bigg|_0^1 = \left(2 + \frac{8}{3} \right) \frac{\pi}{4} = \frac{14}{3} \frac{\pi}{4}.
\]

We conclude $\int_R f(x, y) \, dx \, dy = \frac{7}{6} \pi$.

Review: Area between curves

\[
\text{Area} = \int_a^b (f(x) - g(x)) \, dx
\]

where $[a, b]$ is given.

\[
\text{Area} = \int_{x_1}^{x_2} |g(x) - f(x)| \, dx
\]

where x_i and x_j are not given.

Need to solve $f(x) = g(x)$ for x_i and x_j.

Review: Fubini's Theorem on rectangular domains

Theorem

If \(f : R \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is continuous in \(R = [a, b] \times [c, d] \), then

\[
\int_a^b \int_c^d f(x, y) \, dy \, dx = \int_c^d \int_a^b f(x, y) \, dx \, dy.
\]

Remark: Fubini result says that double integrals can be computed doing two one-variable integrals.

Remark: On a rectangle is simple to switch the order of integration in double integrals of continuous functions.

Fubini's Theorem on Type I domains, \(y(x) \)

Theorem

If \(f : D \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is continuous in \(D \), then hold (Type I):

If \(D = \{(x, y) \in \mathbb{R}^2 : x \in [a_1(x), b_1(x)], y \in [g_1(x), g_2(x)]\} \), with \(g_1, g_2 \) continuous functions on \([a, b]\), then

\[
\int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx = \int_a^b f(x, y) \, dy \, dx.
\]

Fubini's Theorem on Type II domains, \(x(y) \)

Theorem

If \(f : D \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is continuous in \(D \), then hold (Type II):

If \(D = \{(x, y) \in \mathbb{R}^2 : x \in [b_2(y), b_1(y)], y \in [g_1(y), g_2(y)]\} \), with \(h_1, h_2 \) continuous functions on \([c, d]\), then

\[
\int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy = \int_c^d f(x, y) \, dx \, dy.
\]

Summary: Fubini's Theorem on non-rectangular domains

Theorem

If \(f : D \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is continuous in \(D \), then hold:

(a) (Type I) If \(D = \{(x, y) \in \mathbb{R}^2 : x \in [a_1, b_1], y \in [g_1(x), g_2(x)]\} \), with \(g_1, g_2 \) continuous functions on \([a, b]\), then

\[
\int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx = \int_a^b f(x, y) \, dy \, dx.
\]

(b) (Type II) If \(D = \{(x, y) \in \mathbb{R}^2 : x \in [b_2(y), b_1(y)], y \in [c, d]\} \), with \(h_1, h_2 \) continuous functions on \([c, d]\), then

\[
\int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy = \int_c^d f(x, y) \, dx \, dy.
\]
Example
Find the integral of \(f(x, y) = x^2 + y^2 \), on the domain \(D = \{ (x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \ x^2 \leq y \leq x \}. \)

Solution:
This is a Type I domain, with lower boundary
\[y = g_1(x) = x^2, \]
and upper boundary
\[y = g_2(x) = x. \]

Solution: \[
\int \int_D f(x, y) \, dx \, dy = \int_0^1 \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx
\]
with \(g_1(x) = x^2 \) and \(g_2(x) = x \), we obtain
\[
I = \int_0^1 \int_{x^2}^{x} (x^2 + y^2) \, dy \, dx,
\]
\[
I = \int_0^1 \left[x^2 \left(\frac{y^3}{3} \right) \right]_{x^2}^{x} \, dx
\]
\[
= \int_0^1 x^2 (x - x^2) + \frac{1}{3} (x^3 - x^6) \, dx.
\]

Rmk: For some problems, they can be solved either as Type I or Type II.

Example
Find the integral of \(f(x, y) = x^2 + y^2 \) on the domain \(D = \{ (x, y) \in \mathbb{R}^2 : 0 \leq x \leq \sqrt{y}, \ 0 \leq y \leq 1 \}. \)

Solution:
This is a Type II domain, with left boundary
\[x = h_1(y) = y, \]
and right boundary
\[x = h_2(y) = \sqrt{y}. \]

Remark:
This domain is both Type I and Type II: \(y = x^2 \Leftrightarrow x = \sqrt{y}. \)
Solution: \(I = \int_D f(x, y) \, dx \, dy = \int_0^1 \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy \)

with \(h_1(y) = y \) and \(h_2(y) = \sqrt{y} \), we obtain

\[
I = \int_0^1 \int_y^{\sqrt{y}} (x^2 + y^2) \, dx \, dy,
\]

\[
I = \int_0^1 \left[\left(\frac{x^3}{3} \right)_y^{\sqrt{y}} + y^2 \left(x \right)_y^{\sqrt{y}} \right] \, dy,
\]

\[
I = \int_0^1 \left[\frac{1}{3} (y^{3/2} - y^3) + y^2 (y^{1/2} - y) \right] \, dy.
\]

(Cont.)

Solution: \(I = \int_D f(x, y) \, dx \, dy = \int_0^1 \int_{g_1(y)}^{g_2(y)} f(x, y) \, dx \, dy \)

\[
I = \int_0^1 \int_{x_1}^{x_2} f(x, y) \, dx \, dy
\]

We conclude \(\int_D f(x, y) \, dx \, dy = \frac{3}{35} \).

(Cont.)

Domains Type I and Type II

Summary: We have shown that a double integral of a function \(f \) on the domain \(D \) given in the pictures below holds.

\[
\int_D f(x, y) \, dx \, dy = \int_0^1 \int_{g_1(y)}^{g_2(y)} f(x, y) \, dx \, dy = \int_0^1 \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy.
\]

Example

Find the limits of integration of \(\int_D f(x, y) \, dx \, dy \) in the domain

\(D = \{ (x, y) \in \mathbb{R}^2 | \frac{x^2}{4} + \frac{y^2}{9} \leq 1 \} \) when \(D \) is considered first as Type I and then as Type II.

Solution: The boundary is the ellipse \(\frac{x^2}{4} + \frac{y^2}{9} = 1 \).

So, the boundary as Type I is given by

\[
y = 3\sqrt{1 - \frac{x^2}{4}} = g_1(x), \quad y = 2\sqrt{1 - \frac{x^2}{9}} = g_2(x).
\]

The boundary as Type II is given by

\[
x = 3\sqrt{1 - \frac{y^2}{9}} = h_1(y), \quad x = 2\sqrt{1 - \frac{y^2}{4}} = h_2(y).
\]
Calculating the area as the volume

Areas of a region on a plane

Definition
The area of a closed, bounded region R on a plane is given by

$$A = \int_R dx \, dy.$$

Remark:
- To compute the area of a region R we integrate the function $f(x, y) = 1$ on that region R.
- The area of a region R is computed as the volume of a 3-dimensional region with base R and height equal to 1.
Example
Find the area of \(R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], y \in [x^2, x+2]\} \).

Solution: We express the region \(R \) as an integral Type I, integrating first on vertical directions:

\[
A = \int_{-1}^{2} \int_{x^2}^{x+2} dy \, dx.
\]

Rmk.: This part is the set-up we learned in Calculus I.

\[
A = \int_{-1}^{2} \left[y \right]_{x^2}^{x+2} dx = \int_{-1}^{2} (x+2-x^2) dx = \left[\frac{x^2}{2} + 2x - \frac{x^3}{3} \right]_{-1}^{2}
\]

\[
A = 2 - \frac{1}{2} + 4 + 2 - \frac{8}{3} - \frac{1}{3} = 8 - \frac{1}{2} - 3 \quad \Rightarrow \quad A = \frac{9}{2}.
\]

\(\square \)

Average value of a function

Review: The average of a single variable function.

Definition
The average of a function \(f : [a, b] \to \mathbb{R} \) on the interval \([a, b]\), denoted by \(\bar{f} \), is given by

\[
\bar{f} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx.
\]

Definition
The average of a function \(f : R \subset \mathbb{R}^2 \to \mathbb{R} \) on the region \(R \) with area \(A(R) \), denoted by \(\bar{T} \), is given by

\[
\bar{T} = \frac{1}{A(R)} \int_{R} f(x, y) \, dx \, dy.
\]

Example
Find the average of \(f(x, y) = xy \) on the region
\(R = \{(x, y) \in \mathbb{R}^2 : x \in [0, 2], y \in [0, 3]\} \).

Solution: The area of the rectangle \(R \) is \(A(R) = 6 \).

We only need to compute
\[
I = \int_{R} f(x, y) \, dx \, dy
\]

\[
I = \int_{0}^{2} \int_{0}^{3} xy \, dx \, dy = \int_{0}^{2} x \left(\frac{x^2}{2} \right)_{0}^{3} \, dx = \int_{0}^{2} \frac{9x}{2} \, dx
\]

\[
I = \frac{9}{2} \left(\frac{x^2}{2} \right)_{0}^{2} = I = 9.
\]

Since \(\bar{T} = I/A(R) = \frac{9}{6} \), we get \(\bar{T} = \frac{3}{2} \).
Example
Find the integral of $\rho(x, y) = x + y$ in the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$.

Solution: We need to compute
\[M = \int_{R} \rho(x, y) \, dx \, dy. \]
Remark: If ρ is the mass density, then M is the total mass.
\[M = \int_{0}^{1} \int_{0}^{2x} (x + y) \, dy \, dx = \int_{0}^{1} \left[x \left(y^2 \right)_{0}^{2x} + \left(\frac{y^2}{2} \right)_{0}^{2x} \right] \, dx. \]
\[M = \int_{0}^{1} \left[2x^3 + 2x^2 \right] \, dx = 4 \cdot \frac{x^4}{3} \bigg|_{0}^{1} \Rightarrow M = \frac{4}{3} \quad <1. \]

Example
Given the function $\rho(x, y) = x + y$, the number M computed in the previous example, and the triangle with boundaries $y = 0$, $x = 1$ and $y = 2x$, find the numbers
\[\bar{r}_x = \frac{1}{M} \int_{R} x \rho(x, y) \, dy \, dx, \quad \bar{r}_y = \frac{1}{M} \int_{R} y \rho(x, y) \, dx \, dy. \]
Remark: $r = (\bar{r}_x, \bar{r}_y)$ is the center of mass of the body.
Solution: Recall: $M = \frac{4}{3}$. We need to compute
\[\bar{r}_x = \frac{1}{M} \int_{0}^{1} \int_{0}^{2x} (x + y) \, dy \, dx = \frac{3}{4} \left[\int_{0}^{1} x^2 \left(y^2 \right)_{0}^{2x} + \left(\frac{y^2}{2} \right)_{0}^{2x} \right] \, dx \]
\[\bar{r}_y = \frac{3}{4} \int_{0}^{1} \left[2x^3 + 2x^2 \right] \, dx = \frac{3}{4} \cdot \frac{x^4}{1} \bigg|_{0}^{1} \Rightarrow \bar{r}_y = \frac{3}{4}. \]

(Continue)
\[\bar{r}_x = \frac{1}{M} \int_{0}^{1} \int_{0}^{2x} (x + y) \, dy \, dx = \frac{3}{4} \int_{0}^{1} \left[x \left(y^2 \right)_{0}^{2x} + \left(\frac{y^2}{2} \right)_{0}^{2x} \right] \, dx \]
\[\bar{r}_y = \frac{3}{4} \int_{0}^{1} \left[2x^3 + 2x^2 \right] \, dx = \frac{3}{4} \cdot \frac{x^4}{1} \bigg|_{0}^{1} \Rightarrow \bar{r}_y = \frac{3}{4}. \]
\[\Rightarrow (\bar{r}_x, \bar{r}_y) = \left(\frac{1}{4}, \frac{3}{4} \right) \quad \text{Center of the mass.} \]

Bacterium population.
If $f(x, y) = \frac{10,000e^{y}}{1+|x|^{1/2}}$ represents the population density of a certain bacterium on the xy-plane where x and y are measured in centimeters, find the total population of bacteria within the rectangle: $-5 \leq x \leq 5, -2 \leq y \leq 0$.

10/23/2013
Bacterium population.

If \(f(x, y) = \frac{10,000e^y}{1 + x/2} \) represents the population density of a certain bacterium on the xy-plane where \(x \) and \(y \) are measured in centimeters, find the total population of bacteria within the rectangle: \(-5 \leq x \leq 5, -2 \leq y \leq 0\).

Solution: Total population = \(\iint \text{density} \, dA \)

\[
= \int_{-5}^{5} \int_{-2}^{0} \frac{10,000e^y}{1 + |x|/2} \, dy \, dx = \int_{-5}^{5} \frac{10,000}{1 + |x|/2} (1 - e^{-2}) \, dx \\
= 10^4 (1 - e^{-2}) \left[\int_{-5}^{0} \frac{1}{1 - x/2} \, dx + \int_{0}^{5} \frac{1}{1 + x/2} \, dx \right] \\
= 10^4 (1 - e^{-2}) \left[-2\ln \left| 1 - \frac{x}{2} \right| \bigg|_{-5}^{0} + 2\ln \left| 1 + \frac{x}{2} \right| \bigg|_{0}^{5} \right] \\
= 4 \times 10^4 (1 - e^{-2}) \times \ln \frac{7}{2} \approx 43329
\]