Recall: If we have two points A and B in 3D and we have a path c (or curve) joining these two points, and also we have a vector field $F = \langle M, N, P \rangle$, then we learned how to compute $\int_C F \cdot dr$ - work, circulation, flow.

$$\int_C F \cdot dr = \int_a^b F(r(t)) \cdot \frac{dr}{dt} \, dt$$

and $r(t)$ is a parameterization of a curve C.
But do we have a formula like:

\[\int_{A}^{B} F \cdot dr = \text{surf}(B) - \text{surf}(A) \]

like in 1-dimensional case?

In general we don't have 😞

But we do have this kind of formula if: there exists a scalar function \(f(x,y,z): \mathbb{R}^3 \rightarrow \mathbb{R} \) such that \(\nabla f = F \). In this case

\[\int_{A}^{B} F \cdot dr = f(B) - f(A) \]

Regardless of the choices of the path \(C \) joining the points \(A \) and \(B \).
This means that integral does not depend on path. So it is path independent.

Example: Let $A = (0, 0, 0)$, $B = (1, 1, 1)$ and $F = \langle yz, xz, xy \rangle = yz \cdot i + xz \cdot j + xy \cdot k$

Find $\int_{A} F \cdot dr$

Solution:

Note that if $f(x, y, z) = xyz$ then

$\nabla f = \langle f_x, f_y, f_z \rangle = \langle yz, xz, xy \rangle = F$

Hence

$$\int_{(0,0,0)}^{(1,1,1)} F \cdot dr = \int_{(0,0,0)}^{(1,1,1)} \nabla f \cdot dr = f(1,1,1) - f(0,0,0) = 1.$$
We solved the problem!

But how do we find f?

And how to check if that f existed?

If such f exists then the vector field F is called \textit{conservative}.

Question: When does such f exist?

Answer: Here is the test:

Let $F = \langle M, N, P \rangle$

If \[
\frac{\partial F}{\partial y} = \frac{\partial N}{\partial z}, \quad \frac{\partial M}{\partial z} = \frac{\partial L}{\partial x}, \quad \frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}\]

Then such f exist (so the vector field F is \textit{conservative}).
How to remember this formula?

We want \(f \) such that

\[
\langle f_x, f_y, f_z \rangle = \langle M, N, P \rangle
\]

Or,

\[
\begin{align*}
 f_x &= M \\
 f_y &= N \\
 f_z &= P
\end{align*}
\]

but \(f_{xy} = f_{yx} \), \(f_{xz} = f_{zx} \) and \(f_{yz} = f_{zy} \), therefore

for example, this \(f_{xy} = f_{yx} \) implies that

\[
\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}
\]

and so on you can get others as well.

But how to find such \(f \) -?

Here is the solution on some particular example:
Example:

Let \(F = (2x+y+z)i + (2y+x+z)j + (2z+y+x)k \)

Find \(f \) such that \(\nabla f = F \)

Solution: if \(\nabla f = F \) it means

\[\langle f_x, f_y, f_z \rangle = \langle 2x+y+z, 2y+x+z, 2z+y+x \rangle \]

So it means:

1. \(f_x = 2x+y+z \)
2. \(f_y = 2y+x+z \)
3. \(f_z = 2z+y+x \)

\[f_x = 2x+y+z \] integrate over \(x \) we get

\[f = \int (2x+y+z) dx = x^2+yx+zx+C \]

when constant \(C \) depends on \((y,z)\) So

\[f = x^2+yx+zx+C(y,z) \]

So we still need to find \(C(y,z) \)

Let's use 2 and 3.
So \(f = x^2 + yx + z \)
but \(f_y = 2y + x + 2 \) therefore

\[\left(x^2 + yx + z + C(y,z) \right)' \bigg|_y = 2y + x + 2 \]

\(x + C_y'(y,z) = 2y + x + 2 \) on

\(C_y'(y,z) = 2y + x + 2 = 2y + 2 \)

Now let's integrate over \(y \).

\[C(y,z) = \int (2y + 2) \, dy = \int (2y + 2) \, dy \]

\(y^2 + 2y + B \), where \(B \) is some constant
which depends on \(z \). So \(B = B(x) \)

Let's collect collect (1) and (2)

(1) implies \(f = x^2 + yx + z + C_y(z) \), (2) implies \(C(y,z) = y^2 + 2y + B(x) \)

Hence

\[f = x^2 + yx + z + y^2 + 2y + B(z) \]
but still we need to find \(B(x) \)? Let's use \(\text{circ} \) or \(\text{arc} \).

Recall: \(f = x^2 + yx + zx + y^2 + 2y + B(z) \)

\(\text{circle} \)

\(\text{arc} \)

3 \(\int z = 2z + y + x \)

\(x^2 + yx + zx + y^2 + 2y + B(z) \int \frac{d}{dz} = 2z + y + x \)

\(x + y + B'(z) = 2z + y + x \)

\(B'(z) = 2z \)

\(B(z) = \int 2z \, dz = \frac{z^2}{2} + C \)

which does not depend on anything

So

\(f(x, y, z) = \int x^2 + yx + zx + y^2 + ty + z^2 \)

Remark: Such function \(f \) is called potential function for vector field \(F \).
Greens formula

[flux, circulation]

Sometimes is called outward flux

Let C be closed simple curve ∂D

Then we know that

$$\text{flux} = \int_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_C F(r(t)) \cdot \left(\frac{dy}{dt} \frac{dx}{dt} \right) dt$$

This is the way how do we compute this flux.

But there is a simple way (Greens formula)

$$\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_D \left(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial y} \right) \, dx \, dy$$

\text{interior of a curve (everything inside!)}
So one integral becomes double integral over the domain enclosed by the curve C.

Circulation:

\[\text{Circulation} = \oint_C \mathbf{F} \cdot d\mathbf{s} = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy \]

counter clockwise

domain enclosed by a curve C.

Examples:

Let \(\mathbf{F}(x,y) = (\cot(\omega x) + y, \cot(\omega y) - x) \)

and let find the circulation over the boundary of \(y = x^2 \) and \(y = 2x \) domain bounded by these curves.
Solution:

\[
\begin{align*}
\text{Circulation} &= \iint_S \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy \\
M &= \langle \tan (\cos x) + y, \cot (\sin y) - x \rangle \\
N &= 1 \\
\end{align*}
\]

\[
\int_{-1}^{1} \int_{-1}^{1} [-1 - (+1)] \, dx \, dy = -2 \cdot \iint_S dx \, dy = -2 \cdot \iint_S dy \, dx
\]

\[
\begin{align*}
-2 \int_{0}^{2} \int_{0}^{2x} 1 \, dy \, dx &= -2 \int_{0}^{2} (2x - x^2) \, dx = -2 \left[x^2 - \frac{x^3}{3} \right]_0^2 \\
&= -2 \left[4 - \frac{8}{3} \right] = \left[-\frac{8}{3} \right]
\end{align*}
\]