Boundary Value Problems for Divergence Form Elliptic Equations

Steve Hofmann
University of Missouri, USA
hofmanns@missouri.edu

Abstract

The theory that we discuss in this lecture has its origin in the study of the steady-state heat equation, i.e., Laplace’s equation, which in \mathbb{R}^d is

$$\Delta u := -\sum_{j=1}^d u_{x_j x_j} = 0.$$

Let $\Omega \subset \mathbb{R}^d$ be a connected open set (aka, a “domain”). The following pair of boundary value problems are fundamental: the Dirichlet Problem

$$\begin{cases}
\Delta u = 0 \text{ in } \Omega \\
\left. u \right|_{\partial \Omega} = f,
\end{cases} \quad (D)$$

and the Neumann Problem

$$\begin{cases}
\Delta u = 0 \text{ in } \Omega \\
\frac{\partial u}{\partial N} = g.
\end{cases} \quad (N)$$

In these problems, we seek to determine the temperature u throughout Ω, given either a specified temperature distribution f on the boundary $\partial \Omega$ (Dirichlet problem), or the “heat flux” g on the boundary (Neumann problem). Here, $\partial/\partial N$ denotes differentiation in the direction of N, the outer unit normal to the boundary. In practice, one typically specifies boundary data in some class, i.e., in some function space X, and one seeks appropriate estimates on the solution u, depending on the X-norm of the data.

In this talk, we shall review some of the classical theory, and then discuss more recent developments, in which the Laplacian Δ is replaced by more general elliptic operators.