Math 132.035, Quiz 1 Solutions
9/5/14 (20 points, 20 minutes)

1. Let \(f(x) = x^2 + 2x \).

 (a) (1 point) Find the slope of the secant line joining the points \(P(1, f(1)) \) and \(Q(2, f(2)) \).

 Solution:
 \[
 \frac{(2^2 + 2 \cdot 2) - (1^2 + 2 \cdot 1)}{2 - 1} = \frac{5}{1} = 5
 \]

 (b) (1 point) Find the slope of the secant line joining the points \(P(1, f(1)) \) and \(Q(1 + h, f(1 + h)) \).

 Solution:
 \[
 \frac{(1 + h)^2 + 2(1 + h)) - (1^2 + 2 \cdot 1)}{(1 + h) - h} = \frac{(h^2 + 4h + 3) - 3}{h} = h + 4
 \]

 (c) (2 points) Take a limit of the above slope as \(h \to 0 \) in order to find the slope of the tangent line at \(P(1, f(1)) \).

 Solution:
 \[
 \lim_{h \to 0} h + 4 = 4
 \]

 (d) (1 point) Using your answer from the previous part, give an equation for the tangent line at \(P(1, f(1)) \).

 Solution: The point slope equation
 \[
 y - y_0 = m(x - x_0)
 \]
 gives
 \[
 y - 3 = 4(x - 1),
 \]
 Which simplifies to
 \[
 y = 4x - 1
 \]
2. (1 pt each) Evaluate each of the following expressions. Write DNE if the limit or function evaluation does not exist.

a) \(\lim_{x \to -1^-} F(x) = -3 \)

b) \(\lim_{x \to -1^+} F(x) = -3 \)

c) \(\lim_{x \to -1} F(x) = -3 \)

d) \(F(-1) = -2 \)

e) \(\lim_{x \to 1^-} F(x) = 2 \)

f) \(\lim_{x \to 1^+} F(x) = 3 \)

g) \(\lim_{x \to 1} F(x) \quad \text{DNE} \)

h) \(\lim_{x \to 3} F(x) = 0 \)

i) \(F(3) \quad \text{DNE} \)
3.

4. (3 points)

\[\lim_{h \to 0} \frac{7(1 + h)^2 - 7}{h} \]

Solution:

\[= \lim_{h \to 0} \frac{7h^2 + 14h + 7 - 7}{h} = \lim_{h \to 0} 7h + 14 = 14 \]

Remark: If you let \(f(x) = 7x^2 \) then \(f'(x) = 14x \) so that

\(f'(1) = 14. \)

Which is good, since the above limit computation is simply the computation of \(f'(1) \) via the definition.

5. (3 points)

\[\lim_{h \to 0} \frac{1}{h+2} - \frac{1}{2} \]

Solution:

\[= \lim_{h \to 0} \frac{2 - (2 + h)}{2h(2 + h)} = \lim_{h \to 0} \frac{-1}{2(2 + h)} = \]

\[= -\frac{1}{4} \]

Remark: If you let

\(f(x) = \frac{1}{x} \)

then the above limit computation is simply the computation of \(f'(2) \) which is done below, using derivative rules.

\[f'(2) = \left(\frac{1}{x} \right)'_{x=2} = (x^{-1})'_{x=2} = \]

\[= -x^{-2}_{x=2} = -\frac{1}{4} \]