Let f be a continuous function on $I = [a, b]$. Show that the function f^* defined by

$$f^*(x) = \sup\{f(y) : a \leq y \leq x\},$$

for all $x \in [a, b]$, is an increasing continuous function on $[a, b]$. See Figure 1.

![Figure 1: Graph of f versus f^*](image)

First observe that if $A \leq B \leq C \leq D$, then, for example,

$$D - A \geq C - B \geq 0, \text{ etc.}$$

We also note that since f is continuous and $[a, x]$ closed and bounded for any $x \in [a, b]$, that the supremum is actually a maximum (by the Max-Min Theorem). In other words, for each $x \in [a, b]$, $\exists x_0 \in [a, x]$ such that

(2) \hspace{1cm} f^*(x) = f(x_0)

Finally, note that $f^*(x) \geq f(x)$ for all $x \in [a, b]$.

Let $a \leq s < t \leq b$. Then

$$\{f(y) : a \leq y \leq s\} \subset \{f(y) : a \leq y \leq t\}$$

So by exercise 1.4.7 from the text

$$f^*(s) = \sup\{f(y) : a \leq y \leq s\} \leq \sup\{f(y) : a \leq y \leq t\} = f^*(t)$$

In other words, f^* is increasing.

Method 1 - Show f^* is (Pointwise) Continuous:

Now let $\varepsilon > 0$ and fix $c \in [a, b]$. Then by the continuity of f (at c), there is a $\delta = \delta(c) > 0$ such that

$$|x - c < \delta \implies |f(x) - f(c)| < \varepsilon/2$$

Case 1: $c < x < c + \delta$. In this case, $f^*(x) \geq f^*(c)$ since f^* is increasing. If we have equality, there is nothing to show. Otherwise, we suppose that $f^*(x) > f^*(c)$. So by (2), $f^*(x) = f(x_0)$ for some $a \leq x_0 \leq x$. However, we must have $x \geq x_0 > c$ else $f^*(x) = f^*(c)$. Thus, $|x_0 - c| < \delta$. Now

$$f(x_0) = f^*(x) > f^*(c) \geq f(c)$$

rjh
So by (1),
\[|f^*(x) - f^*(c)| \leq |f(x_0) - f(c)| < \varepsilon/2 < \varepsilon \]

Case 2: \(c - \delta < x < c \). In this case, \(f^*(x) \leq f^*(c) \) since \(f^* \) is increasing. If we have equality, there is nothing to show. Otherwise, we suppose that \(f^*(x) < f^*(c) \). So by (2), \(f^*(c) = f(c_0) \) for some \(a \leq c_0 \leq c \). However, we must have \(x < c_0 \leq c \) else \(f^*(x) = f^*(c) \). In other words, we may assume that \(|x - c_0| < \delta \). Now
\[f(x) \leq f^*(x) < f^*(c) = f(c_0) \]

So by (1),
\[|f^*(x) - f^*(c)| \leq |f(x) - f(c_0)| \]

And now we are stuck. Can you explain why? Think about this before proceeding.

The problem is that our earlier choice of \(\delta > 0 \) specifically depended on \(c \). We don’t (immediately) know anything about the \(\delta = \delta(c_0) > 0 \) required to control the last expression above. Although we can circumvent this by appealing to the uniform continuity of \(f \) (since \(I \) is closed and bounded), there is an easier way. Notice that since \(c - \delta < x < c_0 \leq c \), we also have \(|c_0 - c| < \delta \). Now continuing with (3),
\[|f^*(x) - f^*(c)| \leq |f(x) - f(c_0)| \]
\[\leq |f(x) - f(c)| + |f(c) - f(c_0)| \]
\[< \varepsilon/2 + \varepsilon/2 \]

It follows that \(f^* \) is continuous at \(c \).
Method 2: Prove f^* is Uniformly Continuous:

By Theorem 8 (in class), f is uniformly continuous. So let $\varepsilon > 0$. There exists a $\delta > 0$ so that $|y - x| < \delta$ implies $|f(y) - f(x)| < \varepsilon$.

Now let $y > x$ with $|y - x| < \delta$. If $f^*(y) = f^*(x)$ there is nothing to prove. Suppose then that $f^*(y) > f^*(x)$. So there exists y_0 with $x < y_0 \leq y$ such that $f^*(y) = f(y_0)$. (Why must $y_0 > x$?)

Also, there exists $x_0 \leq x$ such that $f^*(x) = f(x_0)$. We have

$$x_0 \leq x < y_0 \leq y$$

If $x = x_0$ we are done since we now have $|x_0 - y_0| \leq |x - y| < \delta$. So by the uniform continuity of f

$$|f^*(x) - f^*(y)| = |f(x_0) - f(y_0)| < \varepsilon$$

On the other hand, suppose that $x_0 < x < y_0 \leq y$. Then $f(x) < f(x_0) < f(y_0)$. By the IVP there exists $c \in (x, y_0)$ such that $f(c) = f(x_0)$ (see Figure 2). It follows that

$$|f^*(x) - f^*(y)| = |f(c) - f(y_0)| < \varepsilon$$

since $|c - y_0| < |x - y| < \delta$. Now since uniform continuity implies continuity, we are done.

Remark. Method 2 is easier to follow and it illustrates a very nice use of the IVP.