16.8 Stokes' Theorem

Theorem 1. Stokes' Theorem

The circulation of $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ around the boundary C of an oriented surface S in the direction counterclockwise to the surface's unit normal vector \mathbf{n} is equal to the integral

$$
\begin{equation*}
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S \tag{1}
\end{equation*}
$$

The theorem holds under suitable conditions. The usual conditions are that all functions and all derivatives are continuous.

Remark. Notice that the right-hand side of (1) is just the surface integral of the real-valued function

$$
g=\nabla \times \mathbf{F} \cdot \mathbf{n}
$$

Now let $\mathbf{G}=\nabla \times \mathbf{F}$. Then the right-hand side of (1) can also be viewed as the flux of the curl since

$$
\begin{aligned}
\text { flux } & =\iint_{S} \mathbf{G} \cdot \mathbf{n} d S \\
& =\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S
\end{aligned}
$$

Figure 1: A parabolic cap
Example 1. Let $\mathbf{F}=2 y \mathbf{i}-3 x \mathbf{j}-z^{2} \mathbf{k}$. Let S (see Fig. 1) be the level surface of $g(x, y, z)=x^{2}+y^{2}+z=9, \quad z \geq 0$. Evaluate the surface integral below using several different methods. Orient the surface so that the vector normal has a positive k component.
(2)

$$
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S
$$

(a) Direct Computation

Observe that the vector equation for S is given by

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+\left(9-x^{2}-y^{2}\right) \mathbf{k},(x, y) \in R
$$

where $R=\left\{(x, y) \mid x^{2}+y^{2} \leq 9\right\}$. Now

$$
\mathbf{r}_{x}=\mathbf{i}-2 x \mathbf{k} \quad \text { and } \quad \mathbf{r}_{y}=\mathbf{j}-2 y \mathbf{k}
$$

so that

$$
\mathbf{r}_{x} \times \mathbf{r}_{y}=2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k}
$$

Also, it is easy to confirm that

$$
\nabla \times \mathbf{F}=-5 \mathbf{k}
$$

so that

$$
\begin{aligned}
\nabla \times \mathbf{F} \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right) & =-5 \mathbf{k} \cdot(2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k}) \\
& =-5
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S & =\iint_{R} \nabla \times \mathbf{F} \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right) d A \\
& =\iint_{R}-5 d A \\
& =-5 \iint_{R} d A \\
& =-5 \times \text { area of } R \\
& =-5 \times 9 \pi
\end{aligned}
$$

(b) Using Stokes' Theorem

Notice that the boundary of S is closed curve C which lives in the $x y$-plane. We first compute the (counterclockwise) circulation around the closed curve C which has the vector equation

$$
C: \quad \mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}, \quad 0 \leq t \leq 2 \pi
$$

Thus

$$
\begin{aligned}
d \mathbf{r}(t) & =-3 \sin t d t \mathbf{i}+3 \cos t d t \mathbf{j} \\
\mathbf{F} & =2 y \mathbf{i}-3 x \mathbf{j} \\
\mathbf{F}(\mathbf{r}(t)) & =6 \sin t \mathbf{i}-9 \cos t \mathbf{j}
\end{aligned}
$$

so that

$$
\begin{aligned}
\mathbf{F}(\mathbf{r}(t)) \cdot d \mathbf{r} & =\left(-18 \sin ^{2} t-27 \cos ^{2} t\right) d t \\
& =\left(-18-9 \cos ^{2} t\right) d t
\end{aligned}
$$

Now by Stokes' Theorem (1)

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S & =\oint_{C} \mathbf{F} \cdot d \mathbf{r} \\
& =\int_{0}^{2 \pi}\left(-18-9 \cos ^{2} t\right) d t \\
& =-36 \pi-9 \pi \\
& =-45 \pi
\end{aligned}
$$

in agreement with part (a).

Figure 2: $\left.\mathbf{F}\right|_{z=0}=2 y \mathbf{i}-3 x \mathbf{j}$

(c) Exploiting Green's Theorem

As we observed above, the boundary of S happens to lie in the $x y$-plane (see Fig. 2). Now let R be as indicated in part a. Then by Stokes' Theorem and (the tangential form of) Green's Theorem, we have

$$
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R} \nabla \times \mathbf{F} \cdot \mathbf{k} d S
$$

Now by part a, $\nabla \times \mathbf{F} \cdot \mathbf{k}=-5$. Hence

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S & =\iint_{R} \nabla \times \mathbf{F} \cdot \mathbf{k} d A \\
& =-5 \iint_{R} d A \\
& =-5 \times \text { area of } R=-45 \pi
\end{aligned}
$$

as we saw above.

Figure 3: Continuously deformed "parabolic cap" from Example 1

Example 2. Let $\mathbf{F}=2 y \mathbf{i}-3 x \mathbf{j}-z^{2} \mathbf{k}$ be the vector field from the previous example and let S^{\prime} be the surface shown in Figure 3. Notice that S^{\prime} has the same boundary $C: \mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}, 0 \leq t \leq 2 \pi$.

Then by Stokes' Theorem

$$
\begin{aligned}
\iint_{S^{\prime}} \nabla \times \mathbf{F} \cdot \mathbf{n} d S & =\oint_{C} \mathbf{F} \cdot d \mathbf{r} \\
& =-45 \pi
\end{aligned}
$$

The following identity has wide applications.

An Important Identity

$$
\text { curl grad } f=\mathbf{0}
$$

or

$$
\nabla \times \nabla f=\mathbf{0}
$$

Notice that the RHS is a vector. The identity is easy to prove if $f(x, y, z)$ has continuous second partials (see the text).

Example 3. Let C be the boundary of any smooth orientable surface S in space. Show that the circulation of $\mathbf{F}=2 x \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k}$ around C is zero.

Although we can compute $\nabla \times \mathbf{F}$ directly, we'll try another approach.
Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$ then $\nabla f=2 x \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k}=\mathbf{F}$ and

$$
\nabla \times \mathbf{F}=\nabla \times \nabla f=\mathbf{0}
$$

Now by Stokes' Theorem the circulation of \mathbf{F} around C is

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S \\
& =\iint_{S} \mathbf{0} \cdot \mathbf{n} d S \\
& =0
\end{aligned}
$$

Example 4. Recognizing Integrals

Suppose that C is the smooth boundary of the region R or the orientable surface S. Identify each of the following integrals as either a flux or flow integral (or neither). Also, give any other useful information.
(a) $\oint_{C} 4 x y d x-3 x d y$

This integral can be interpreted in two (equivalent) ways.

As a flow integral (circulation)

Let

$$
\mathbf{F}=4 x y \mathbf{i}-3 x \mathbf{j}
$$

then

$$
\begin{aligned}
\oint_{R} \mathbf{F} \cdot d \mathbf{r} & =\oint_{C} 4 x y d x-3 x d y \\
& =\iint_{R}\left(\frac{\partial(-3 x)}{\partial x}-\frac{\partial(4 x y)}{\partial y}\right) d A \\
& =\iint_{R}(-3-4 x) d A
\end{aligned}
$$

by Green's Theorem.

As a flux integral

Let

$$
\mathbf{F}=-3 x \mathbf{i}-4 x y \mathbf{j}
$$

then

$$
\begin{aligned}
\oint_{R} \mathbf{F} \cdot \mathbf{n} d s & =\oint_{C}-3 x d y-(-4 x y) d x \\
& =\iint_{R}\left(\frac{\partial(-3 x)}{\partial x}+\frac{\partial(-4 x y)}{\partial y}\right) d A \\
& =\iint_{R}(-3-4 x) d A
\end{aligned}
$$

by Green's Theorem.

(b) $\iint_{S} \mathbf{G} \cdot \mathbf{n} d S$

This is the flux of the three-dimensional vector field G across the oriented surface S. It is also just the surface integral of the real-valued function $\mathbf{G} \cdot \mathbf{n}$.
(c) $\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S$

This is a "flux of the curl" integral. If ∂S is nice enough, then we may apply Stokes' Theorem to conclude that this is also a circulation integral

$$
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}
$$

Example 5. Let $\mathbf{F}=x^{2} y \mathbf{i}+2 y^{3} z \mathbf{j}+3 z \mathbf{k}$ and let S be the surface whose vector equation is

$$
\mathbf{r}(s, t)=s \cos t \mathbf{i}+s \sin t \mathbf{j}+s \mathbf{k}, \quad(s, t) \in R
$$

where $R=\{(s, t) \mid 0 \leq s \leq 1,0 \leq t \leq 2 \pi\}$. Calculate the flux of the curl of \mathbf{F} across S in the direction away from the z-axis. So the vector normal to the surface should have a negative k component.

We remark that S is the cone $z=\sqrt{x^{2}+y^{2}}, z \leq 1$.
We first calculate $\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S$ directly. Proceeding in the usual way we have

$$
\begin{aligned}
& \mathbf{r}_{s}=\cos t \mathbf{i}+\sin t \mathbf{j}+\mathbf{k} \\
& \mathbf{r}_{t}=-s \sin t \mathbf{i}+s \cos t \mathbf{j}
\end{aligned}
$$

Thus

$$
\mathbf{r}_{s} \times \mathbf{r}_{t}=-s \cos t \mathbf{i}-s \sin t \mathbf{j}+s \mathbf{k}
$$

Since the k component is positive, we choose

$$
\mathbf{r}_{t} \times \mathbf{r}_{s}=-\mathbf{r}_{s} \times \mathbf{r}_{t}=s \cos t \mathbf{i}+s \sin t \mathbf{j}-s \mathbf{k}
$$

A routine calculation yields

$$
\begin{aligned}
\nabla \times \mathbf{F} & =-2 y^{3} \mathbf{i}-x^{2} \mathbf{k} \\
& =-2 s^{3} \sin ^{3} t \mathbf{i}-s^{2} \cos ^{2} t \mathbf{k}
\end{aligned}
$$

So that

$$
\begin{aligned}
\nabla \times \mathbf{F} \cdot\left(\mathbf{r}_{t} \times \mathbf{r}_{s}\right) & =\left(-2 s^{3} \sin ^{3} t \mathbf{i}-s^{2} \cos ^{2} t \mathbf{k}\right) \cdot(s \cos t \mathbf{i}+s \sin t \mathbf{j}-s \mathbf{k}) \\
& =s^{3} \cos ^{2} t-2 s^{4} \sin ^{3} t \cos t
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S & =\iint_{R} \nabla \times \mathbf{F} \cdot\left(\mathbf{r}_{t} \times \mathbf{r}_{s}\right) d A \\
& =\iint_{R}\left(s^{3} \cos ^{2} t-2 s^{4} \sin ^{3} t \cos t\right) d A \\
& =\iint_{R} s^{3} \cos ^{2} t d A-\iint_{R} 2 s^{4} \sin ^{3} t \cos t d A
\end{aligned}
$$

Now the second integral is zero since

$$
\begin{aligned}
\iint_{R} 2 s^{4} \sin ^{3} t \cos t d A & =\int_{0}^{2 \pi} \int_{0}^{1} 2 s^{4} \sin ^{3} t \cos t d s d t \\
& =\int_{0}^{1} 2 s^{4} d s \int_{0}^{2 \pi} \sin ^{3} t \cos t d t \\
& =0
\end{aligned}
$$

For the first integral we have

$$
\begin{aligned}
\iint_{R} s^{3} \cos ^{2} t d A & =\int_{0}^{1} s^{3} d s \int_{0}^{2 \pi} \cos ^{2} t d t \\
& =\frac{1}{4} \times \pi
\end{aligned}
$$

It follows that

$$
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S=\frac{\pi}{4}-0
$$

Example 6. Rework the previous example by evaluating the integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ directly and applying Stokes' Theorem. Here C is the boundary of the surface S from Example 5.

Notice that C is circle $x^{2}+y^{2}=1, z=1$. Thus C can be parameterized by the vector equation

$$
\mathbf{r}(t)=\cos t \mathbf{i}-\sin t \mathbf{j}+\mathbf{k}, \quad 0 \leq t \leq 2 \pi
$$

since the circle must be parameterized in the clockwise direction when viewed from above. It follows that

$$
\frac{d \mathbf{r}}{d t}=-\sin t \mathbf{i}-\cos t \mathbf{j}
$$

and

$$
\mathbf{F}(\mathbf{r}(t))=-\cos ^{2} t \sin t \mathbf{i}-2 \sin ^{3} t \mathbf{j}+3 \mathbf{k}
$$

Thus

$$
\mathbf{F} \cdot d \mathbf{r}=\left(\cos ^{2} t \sin ^{2} t+2 \sin ^{3} t \cos t\right) d t
$$

So by Stokes' theorem

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S & =\oint_{C} \mathbf{F} \cdot d \mathbf{r} \\
& =\int_{0}^{2 \pi}\left(\cos ^{2} t \sin ^{2} t+2 \sin ^{3} t \cos t\right) d t \\
& =\int_{0}^{2 \pi} \cos ^{2} t \sin ^{2} t d t+0 \\
& =\frac{1}{4} \int_{0}^{2 \pi} \sin ^{2} 2 t d t \\
& =\frac{\pi}{4}
\end{aligned}
$$

as we saw above.

Example 7. Let $\mathbf{F}=y \mathbf{i}+x z \mathbf{j}+x^{2} \mathbf{k}$ and let C be the boundary of the triangle cut from the plane $x+y+z=1$ by the first octant.

Calculate the circulation of F around C counterclockwise when viewed from above. That is, evaluate $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$.

Let S be the given triangular region. Then S can be parameterized by the vector equation

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+(1-x-y) \mathbf{k}, \quad(x, y) \in R
$$

where $R=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1-x\}$. Thus

$$
\mathbf{r}_{x} \times \mathbf{r}_{y}=\mathbf{i}+\mathbf{j}+\mathbf{k}
$$

and

$$
\nabla \times \mathbf{F}=-x \mathbf{i}-2 x \mathbf{j}-(x+y) \mathbf{k}
$$

Then by Stokes' Theorem

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S \\
& =\iint_{R}(-x \mathbf{i}-2 x \mathbf{j}-(x+y) \mathbf{k}) \cdot(\mathbf{i}+\mathbf{j}+\mathbf{k}) d A \\
& =-\int_{0}^{1} \int_{0}^{1-x}(4 x+y) d y d x \\
& =\vdots \\
& =-5 / 6
\end{aligned}
$$

Example 8. Rework the previous example by evaluating the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ directly.

Let C_{1} be the line segment from $P(1,0,0)$ to $Q(0,1,0)$. Then C_{1} can be parameterized by the vector equation

$$
\mathbf{r}(t)=(1-t) \mathbf{i}+t \mathbf{j}, \quad t \in[0,1]
$$

Then $d \mathbf{r}=(-\mathbf{i}+\mathbf{j}) d t$ and

$$
\mathbf{F}(\mathbf{r}(t))=t \mathbf{i}+(1-t)^{2} \mathbf{k} \quad \text { and } \quad \mathbf{F} \cdot d \mathbf{r}=-t d t
$$

Thus

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=-\int_{0}^{1} t d t=-1 / 2
$$

Now let C_{2} be the line segment from Q to $T(0,0,1)$. It is straightforward to show that $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=0$. Finally, let C_{3} be the line segment from T to P. Then C_{3} can be parameterized by the vector equation

$$
\mathbf{r}(t)=t \mathbf{j}+(1-t) \mathbf{k}, \quad t \in[0,1]
$$

So that

$$
d \mathbf{r}=(\mathbf{j}-\mathbf{k}) d t \quad \text { and } \quad \mathbf{F} \cdot d \mathbf{r}=-t^{2} d t
$$

It follows that

$$
\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}-t^{2} d t=-1 / 3
$$

Thus

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r} \\
& =-1 / 2+0-1 / 3=-5 / 6
\end{aligned}
$$

as we saw above.

Example 9. Let S be the cylinder $x^{2}+y^{2}=a^{2}, 0 \leq z \leq h$, together with its top, $x^{2}+y^{2} \leq a^{2}, z=h$. Let $\mathbf{F}=-y \mathbf{i}+x \mathbf{j}+x^{2} \mathbf{k}$. Calculate the flux of $\nabla \times \mathbf{F}$ outward through S.

The boundary of S has the vector equation

$$
\mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}, \quad 0 \leq t \leq 2 \pi
$$

Now

$$
\begin{aligned}
\frac{d \mathbf{r}}{d t} & =-a \sin t \mathbf{i}+a \cos t \mathbf{j} \\
\mathbf{F}(\mathbf{r}(t)) & =-a \sin t \mathbf{i}+a \cos t \mathbf{j}
\end{aligned}
$$

So by Stokes' Theorem

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d A & =\oint_{C} \mathbf{F} \cdot d \mathbf{r} \\
& =\int_{0}^{2 \pi} a^{2}\left(\sin ^{2} t+\cos ^{2} t\right) d t=2 \pi a^{2}
\end{aligned}
$$

Figure 4: Space curve generated by the intersection of a plane with an inverted cone.
Example 10. Let $\mathbf{F}=\left\langle-6 y, y^{2} z, 2 x\right\rangle$ and let C be the closed curve generated by the intersection of the cone $z=-\sqrt{x^{2}+y^{2}}$ and the plane $\sqrt{3} y+2 z=-4$. The curve C (an ellipse) is shown in Figure 4. Evaluate the circulation integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$. Orient C to be counterclockwise when viewed from above. (C.f. Example 1 from the text book.)

Instead of evaluating the integral directly, let's appeal to Stokes'
Theorem. A straightforward calculation yields
curl $\mathbf{F}=\nabla \times \mathbf{F}=-y^{2} \mathbf{i}-2 \mathbf{j}+6 \mathbf{k}$. Although we are free to choose any (nice) surface whose boundary is C, it will be easiest if we work with the elliptical region S in the plane $\sqrt{3} y+2 z=-4$ that is bounded by C. Figure 5 shows the surface S reflected across the $x y$-plane (for easier viewing).

Now let $R_{x y}$ be the projection of S onto the $x y$-plane. We leave it as an exercise to show that the boundary of $R_{x y}$ is the ellipse

$$
\begin{equation*}
g(x, y)=\operatorname{def} \frac{x^{2}}{16}+\frac{(y-4 \sqrt{3})^{2}}{64}=1 \tag{3}
\end{equation*}
$$

So the region $R_{x y}$ is defined by the inequality $g(x, y) \leq 1$.

Figure 5: (Reflected) Surface S and its projection $R_{x y}$

Notice that we can parameterize S by the vector equation

$$
\begin{equation*}
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}-\underbrace{\left(2+\frac{\sqrt{3} y}{2}\right)}_{h} \mathbf{k}, \quad(x, y) \in R_{x y} \tag{4}
\end{equation*}
$$

It follows that

$$
\mathbf{r}_{x} \times \mathbf{r}_{y}=-\frac{\partial h}{\partial x} \mathbf{i}-\frac{\partial h}{\partial y} \mathbf{j}+\mathbf{k}=\frac{\sqrt{3}}{2} \mathbf{j}+\mathbf{k}
$$

So by Stokes' Theorem

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S \\
& =\iint_{R_{x y}}\left(-y^{2} \mathbf{i}-2 \mathbf{j}+6 \mathbf{k}\right) \cdot\left(\frac{\sqrt{3}}{2} \mathbf{j}+\mathbf{k}\right) d A \\
& =(6-\sqrt{3}) \iint_{R_{x y}} d A \\
& =(6-\sqrt{3}) \times \text { area of the ellipse from }(3) \\
& =(6-\sqrt{3}) \times 32 \pi
\end{aligned}
$$

Example 11. Redo the previous example by directly computing the circulation integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. Notice that C can be defined by the vector equation

$$
\mathbf{r}(t)=4 \cos t \mathbf{i}+(8 \sin t+4 \sqrt{3}) \mathbf{j}-(8+4 \sqrt{3} \sin t) \mathbf{k}, \quad 0 \leq t \leq 2 \pi
$$

and

$$
d \mathbf{r}=(-4 \sin t \mathbf{i}+8 \cos t \mathbf{j}-4 \sqrt{3} \cos t \mathbf{k}) d t
$$

Thus

$$
\mathbf{F}=-6(8 \sin t+4 \sqrt{3}) \mathbf{i}+(8 \sin t+4 \sqrt{3})^{2}(8+4 \sqrt{3} \sin t) \mathbf{j}+8 \cos t \mathbf{k}
$$

so that

$$
\begin{aligned}
\mathbf{F} \cdot d \mathbf{r}= & (24 \sin t(8 \sin t+4 \sqrt{3}) \\
& \left.+8 \cos t(8 \sin t+4 \sqrt{3})^{2}(8+4 \sqrt{3} \sin t)-32 \sqrt{3} \cos ^{2} t\right) d t
\end{aligned}
$$

It follows that

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F} \cdot d \mathbf{r}=\cdots=32(6-\sqrt{3}) \pi
$$

as we saw above. However, computing the surface integral was certainly easier than the calculation above.

Example 12. Redo Example 10 by using the vector equation below instead of (4).

$$
\begin{equation*}
\mathbf{r}(x, z)=x \mathbf{i}+\underbrace{\frac{-2}{\sqrt{3}}(2+z)}_{q} \mathbf{j}+z \mathbf{k}, \quad(x, z) \in R_{x z} \tag{5}
\end{equation*}
$$

Then

$$
\mathbf{r}_{x} \times \mathbf{r}_{z}=-\frac{\partial q}{\partial x} \mathbf{i}+\mathbf{j}-\frac{\partial q}{\partial z} \mathbf{j}=\mathbf{j}+\frac{2}{\sqrt{3}} \mathbf{k}
$$

Here $R_{x z}$ is the projection of S onto the $x z$-plane. We leave it as an exercise to show that $R_{x z}$ is the set of points (x, z) that satisfy

$$
\frac{x^{2}}{16}+\frac{(z+8)^{2}}{48} \leq 1
$$

Once again by Stokes' Theorem we have

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S \\
& =\iint_{R_{x z}}\left(-y^{2} \mathbf{i}-2 \mathbf{j}+6 \mathbf{k}\right) \cdot\left(\mathbf{j}+\frac{2}{\sqrt{3}} \mathbf{k}\right) d A \\
& =\left(\frac{12}{\sqrt{3}}-2\right) \iint_{R_{x z}} d A \\
& =\left(\frac{12}{\sqrt{3}}-2\right) \times \text { area of the elliptical region } R_{x z} \\
& =\left(\frac{12}{\sqrt{3}}-2\right) \times 16 \pi \sqrt{3} \\
& =32(6-\sqrt{3}) \pi
\end{aligned}
$$

Example 13. Now let $\mathbf{G}=\left\langle x^{2} y, \frac{x^{3}}{3}, \frac{-2 x y}{\sqrt{3}}\right\rangle$ and let C be the ellipse defined in Example 10. Find $\oint_{C} \mathbf{G} \cdot d \mathbf{r}$.

Let S and $R_{x y}$ be as defined in Example 10. Then by Stokes' Theorem

$$
\begin{aligned}
\oint_{C} \mathbf{G} \cdot d \mathbf{r} & =\iint_{S} \nabla \times \mathbf{G} \cdot \mathbf{n} d S \\
& =\frac{1}{\sqrt{3}} \iint_{R_{x y}}(-2 x \mathbf{i}+2 y \mathbf{j}) \cdot\left(\frac{\sqrt{3}}{2} \mathbf{j}+\mathbf{k}\right) d A \\
& =\iint_{R_{x y}} y d A \\
& =\int_{-8+4 \sqrt{3}}^{8+4 \sqrt{3}} \int_{\frac{-\sqrt{64-(y-4 \sqrt{3})^{2}}}{2}}^{\frac{\sqrt{64-(y-4 \sqrt{3})^{2}}}{2}} d x d y \\
& =\int_{-8+4 \sqrt{3}}^{8+4 \sqrt{3}} y \sqrt{64-(y-4 \sqrt{3})^{2}} d y \\
& =\int_{-8}^{8}(w+4 \sqrt{3}) \sqrt{64-w^{2}} d w \\
& =\int_{-8}^{8} w \sqrt{64-w^{2}} d w+4 \sqrt{3} \int_{-8}^{8} \sqrt{64-w^{2}} d w \\
& =0+4 \sqrt{3} \times 32 \pi
\end{aligned}
$$

Figure 6: Cylindrical surface S bounded by the space curve C
Example 14. Let $\mathbf{F}=\left\langle 2 z, 3 x y^{2}, x^{2}+y\right\rangle$ and let S be the cylindrical shell $x^{2}+y^{2}=1$, bounded below by the unit disk $x^{2}+y^{2} \leq 1$ in the $x y$-plane and with an open top that lies in the plane $T: 2 x+z=6$. Also, let C be the boundary of S oriented counterclockwise when viewed from above (see Figure 6). Use Stokes' Theorem to evaluate the circulation of \mathbf{F} around C.

As a general rule, we are permitted to use the most convenient piecewise smooth surface that has boundary C (which would be the ellipse in the plane T in this case). However, the theorem must also hold for S. Notice that $S=S_{B} \cup S_{C}$ where S_{B} is the base (in the $x y$-plane and S_{C} is the cylinder.

A routine calculation yields $\nabla \times \mathbf{F}=\left\langle 1,2-2 x, 3 y^{2}\right\rangle$.

For the base we have

$$
\begin{aligned}
\iint_{S_{B}} \nabla \times F \cdot \mathbf{n} d S & =\iint_{S_{B}} \nabla \times F \cdot \mathbf{k} d S \\
& =\iint_{\text {unit disk }}\left(3 y^{2}-0\right) d A \\
& =3 \int_{0}^{2 \pi} \int_{0}^{1} r^{2} \sin ^{2} \theta r d r d \theta \\
& =\frac{3}{4} \int_{0}^{2 \pi} \sin ^{2} \theta d \theta=\frac{3 \pi}{4}
\end{aligned}
$$

Notice that S_{C} can be parameterized by the vector equation

$$
\mathbf{r}(s, t)=\cos t \mathbf{i}+\sin t \mathbf{j}+s \mathbf{k}, \quad(s, t) \in D
$$

where $D=\{(s, t): 0 \leq t \leq 2 \pi, 0 \leq s \leq 6-2 \cos t\}$. Also,

$$
\mathbf{r}_{s} \times \mathbf{r}_{t}=-\cos t \mathbf{i}-\sin t \mathbf{j}
$$

Now

$$
\begin{aligned}
\iint_{S_{C}} \nabla \times F \cdot \mathbf{n} d S & =\int_{0}^{2 \pi} \int_{0}^{6-2 \cos t}\left\langle 1,2-2 \cos t, 3 \sin ^{2} t\right\rangle \cdot\langle-\cos t,-\sin t\rangle d s d t \\
& =\int_{0}^{2 \pi} \int_{0}^{6-2 \cos t}(2 \cos t-2) \sin t-\cos t d s d t \\
& \vdots \\
& =2 \pi
\end{aligned}
$$

Thus

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{n} d S=\frac{3 \pi}{4}+2 \pi
$$

Exercise: In Figure 6 from Example 14, let S_{E} be the elliptical region that lies in the plane T (and is bounded by C). Find the flux of the curl $\iint_{S_{E}} \nabla \times \mathbf{F} \cdot \mathbf{n} d S$. Also, evaluate the circulation integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ directly.

Figure 7: Curved elliptical surface S bounded by the space curve C
Example 15. Let $\mathbf{F}=\left\langle-3 y, x^{2} z, x\right\rangle$ and let C be the intersection of the cylinders $x^{2}+y^{2}=4$ and $z=4+y^{2} / 2$. Find the counterclockwise circulation (when viewed from above) of \mathbf{F} around C (see Figure 7).

Let S be the interior of C on the cylinder $z=4+y^{2} / 2$. Then S can be defined by the vector equation

$$
\mathbf{r}(s, t)=\left\langle s \cos t, s \sin t, 4+\frac{s^{2} \sin ^{2} t}{2}\right\rangle,(s, t) \in D
$$

where $D=\{(s, t) \mid 0 \leq s \leq 2,0 \leq t \leq 2 \pi\}$. Now

$$
\begin{aligned}
& \mathbf{r}_{s}=\left\langle\cos t, \sin t, s \sin ^{2} t\right\rangle \\
& \mathbf{r}_{t}=\left\langle-s \sin t, s \cos t, s^{2} \sin t \cos t\right\rangle
\end{aligned}
$$

so that

$$
\mathbf{r}_{s} \times \mathbf{r}_{t}=\left\langle 0,-s^{2} \sin t, s\right\rangle
$$

Now a routine calculation shows that $\nabla \times \mathbf{F}=\left\langle-x^{2},-1,3+2 x z\right\rangle$. Thus

$$
\nabla \times \mathbf{F}(\mathbf{r}(s, t))=\left\langle-s^{2} \cos ^{2} t,-1,3+2 s \cos t\left(4+\frac{s^{2} \sin ^{2} t}{2}\right)\right\rangle
$$

and

$$
\nabla \times \mathbf{F}(\mathbf{r}(s, t)) \cdot\left(\mathbf{r}_{s} \times \mathbf{r}_{t}\right)=3 s+8 s^{2} \cos t+s^{2} \sin t+s^{4} \cos t \sin ^{2} t
$$

So by Stokes' Theorem

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{S} \nabla \times F \cdot \mathbf{n} d S \\
& =\iint_{D} \nabla \times \mathbf{F}(\mathbf{r}(s, t)) \cdot\left(\mathbf{r}_{s} \times \mathbf{r}_{t}\right) d s d t \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left(3 s+8 s^{2} \cos t+s^{2} \sin t+s^{4} \cos t \sin ^{2} t\right) d s d t \\
& =6 \pi \int_{0}^{2} s d s+0+0+0 \\
& =12 \pi
\end{aligned}
$$

Exercise: In the above example, evaluate $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ directly.

Integral Theorems, Flux and Flow - Summary

As we saw earlier, we can imagine the del operator defined in this chapter as also being defined on two-dimensional vector fields by writing

$$
\mathbf{F}=M \mathbf{i}+N \mathbf{j}=M \mathbf{i}+N \mathbf{j}+0 \mathbf{k}
$$

whenever it is appropriate.
Now using the "del" notation we can rewrite all the integral theorems using a uniform notation.

We recall a few important definitions.

Definition. Circulation Density at a Point

The circulation density or curl of a vector field \mathbf{F} is

$$
\begin{aligned}
\text { curl } \mathbf{F} & =\nabla \times \mathbf{F} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & P
\end{array}\right|
\end{aligned}
$$

As we saw earlier, this reduces to the usual k -component of curl whenever $P=0$ and $\mathbf{F}=\left.\mathbf{F}\right|_{z=0}$.

Definition. Flux Density at a Point
The flux density or divergence of a vector field \mathbf{F} is

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}
$$

Once again, this reduces to the usual two-dimensional version whenever $P=0$.

For circulation around a smooth closed curve C we have Green's Theorem (Tangential Form):

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\oint_{C} M d x+N d y \\
& =\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \\
& =\iint_{R} \nabla \times \mathbf{F} \cdot \mathbf{k} d A
\end{aligned}
$$

Stokes' Theorem:

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S
$$

In the first case, C is the boundary of the plane region R. In the second, C is the boundary of the oriented surface S.

For the flux around the smooth closed curve C of an orientable surface S we have

Green's Theorem (Normal Form):

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s & =\oint_{C} M d y-N d x \\
& =\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d A \\
& =\iint_{R} \nabla \cdot \mathbf{F} d A
\end{aligned}
$$

Divergence Theorem:

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{D} \nabla \cdot \mathbf{F} d V
$$

Once again C is the boundary of the plane region R and D is the region enclosed by the oriented surface S.

