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Video Link

15.6 Surface Area and Surface Integrals

Surface Area

R

S

Surface z = f (x, y)

Suppose that we wish to measure the “area” of the level surface

z = f (x, y). Let S denote this area and let R be the “shadow” of S on

one of the coordinate planes. As usual, we partition the region R into

small rectangles each of area ∆Ak (see sketch below).

https://web.microsoftstream.com/video/6b312198-1c9b-4998-8b4a-7811e37538fe?list=studio
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Now let ∆σk denote the area of the surface directly above the region

∆Ak and let ∆Tk denote the area of the corresponding parallelogram

on the tangent plane at the point of tangency, say Pk. If ∆Ak is small

then ∆Tk ≈ ∆σk. Thus

∑

∆σk ≈
∑

∆Tk

so that

Area(S) = lim
∑

∆Tk

So what is ∆Tk. Let uk and vk be the vectors that correspond to the

sides of the parallelogram with area ∆Tk. In section 12.4 we saw that

∆Tk = |uk × vk|.
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Suppose that Pk = Pk(xk, yk, f (xk, yk)) and recall from section 14.3 that

vk = ∆x i + fx(xk, yk)∆xk

uk = ∆y j + fy(xk, yk)∆y k

Then

vk × uk =

∣
∣
∣
∣
∣
∣

i j k

∆x 0 fx(xk, yk)∆x

0 ∆y fy(xk, yk)∆y

∣
∣
∣
∣
∣
∣

= i

∣
∣
∣
∣

0 fx(xk, yk)∆x

∆y fy(xk, yk)∆y

∣
∣
∣
∣
− j

∣
∣
∣
∣

∆x fx(xk, yk)∆x

0 fy(xk, yk)∆y

∣
∣
∣
∣
+ k

∣
∣
∣
∣

∆x 0

0 ∆y

∣
∣
∣
∣

= ...

= [−fx(xk, yk) i− fy(xk, yk) j + k] ∆x∆y
︸ ︷︷ ︸

∆A

So that

∆Tk = |uk × vk|

=

√

[fx(xk, yk)]
2 + [fy(xk, yk)]

2 + 1∆A
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It follows that the surface area is given by

Area(S) = lim
∑

∆Tk

= lim
∑√

1 + [fx(xk, yk)]
2 + [fy(xk, yk)]

2∆A

=

¨

R

√

1 + [fx(x, y)]
2 + [fy(x, y)]

2 dA

provided the limit exists. This leads to the following definition.



16.6 5

Definition. The Formula for Surface Area

The area of the surface S defined by z = f (x, y) over a closed and

bounded plane region R, with continuous partials fx and fy, is given by

Area(S) =

¨

R

√

1 + [fx(x, y)]
2 + [fy(x, y)]

2 dA

or, alternatively,

Area(S) =

¨

R

√

1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dA

Remark. It is worth mentioning that the surface S can also be realized

as the level surface F (x, y, z) = z − f (x, y). Now observe that

∇F = −fx i− fy j + k

so that

|∇F | =

√

1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2
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Example 1. Finding Surface Area

Find the area of the surface cut from the bottom of the paraboloid

z = x2 + y2 and the plane z = 4.

The surface S along with the region R are shown in the sketch below.

x

y
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R
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Thus
∂z

∂x
= 2x and

∂z

∂y
= 2y

so that √

1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

=
√

1 + 4x2 + 4y2

It follows that the surface area is

A(S) =

¨

R

√

1 + 4x2 + 4y2 dA

=

¨

x2+y2≤4

√

1 + 4x2 + 4y2 dx dy

=

ˆ 2π

0

ˆ 2

0

√
1 + 4r2 r dr dθ

= 2π

ˆ 2

0

√
1 + 4r2 r dr

=
2π

12
(1 + 4r2)3/2

2

0

=
π

6

(

17
√
17− 1

)
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16.6 Parametric Surfaces and Their Areas

Parametric Surfaces

In this section we study the vector valued function r(u, v) of two

parameters u and v. So let

(1) r(u, v) = x(u, v) i + y(u, v) j + z(u, v)k

defined on a region D of the so-called uv-plane.

The set of points (x, y, z) ∈ R
3 with

(2) x = x(u, v), y = y(u, v), z = z(u, v), (u, v) ∈ D

is called a parametric surface S and the equations (2) are called the

parametric equations of S.
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x
y

z

Example 2. Identify and sketch the surface whose vector equation is

r(u, v) = cosu i + v j +
3 sinu

4
k

The corresponding parametric equations are

x = cosu, y = v, z =
3 sinu

4

Notice that

9x2 + 16z2 = 9 cos2 u + 9 sin2 u = 9

So that cross-sections parallel to the xz-plane are ellipses. Since

y = v without restriction, we obtain an elliptical cylinder parallel to the

y-axis.
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Suppose now that we fix u = u0. Then r1(v) = r(u0, v) is a vector-valued

function of a single parameter v. Similarly, r2(u) = r(u, v0) is a

vector-valued function of the single parameter u. In each case, we

generate families of space curves that lie on the surface S. A few of

these surface curves are shown on the surface below (from the

previous example).

x
y

z
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It turns out to be very straightforward to find the parametric

representation for a given surface of the form z = f (x, y).

Example 3. Find the parametric representation of the paraboloid

z = x2 + y2 + 1.

We give two representations.

The Easy One: Here we let x = x and y = y. Then z = x2 + y2 + 1 so

that

r(x, y) = x i + y j + (x2 + y2 + 1)k

The More Useful Representation (perhaps): For this one we work

with the polar parameters r and θ. So let x = r cos θ and y = r sin θ. It

follows that z = r2 + 1 so that

r(r, θ) = r cos θ i + r sin θ j + (r2 + 1)k

Parametric Surfaces and Tangent Planes

This is presents no difficulties. See the text.
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Surface Area

It turns out the we can derive the formula for the area of parametric

surface using a similar approach to the one used above. The details

are outlined in the text. We have

Definition. If a smooth parametric surface S is given by the equation

r(u, v) = x(u, v) i + y(u, v) j + z(u, v)k, (u, v) ∈ D

and S is covered just once as (u, v) ranges over the parameter domain

D, then the surface area of S is given by

(3) A(S) =

¨

D

|ru × rv| dA

where

ru =
∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k

rv =
∂x

∂v
i +

∂y

∂v
j +

∂z

∂v
k
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Example 4. Find the area of the helicoid (see Figure 1) whose vector

equation is

(4) r(s, t) = s cos t i + s sin t j + tk, 0 ≤ s ≤ 1, 0 ≤ t ≤ π

We compute the first partials to obtain

rs = cos t i + sin t j

rt = −s sin t i + s cos t j + k

So that

rs × rt = sin t i− cos t j + sk

and hence

|rs × rt|2 = 1 + s2

So by (3) the surface area is

A =

¨

D

|rs × rt| dA

=

ˆ π

0

ˆ 1

0

√
1 + s2 ds dt

= π

ˆ 1

0

√
1 + s2 ds(5)

= ...

= π

(√
2 + ln

(√
2 + 1

)

2

)

Here we have suppressed the calculations involving trigonometric

substitution and the subsequent integration by parts.
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Figure 1: Several Views of the Helicoid

Example 5. Redo the previous example by writing the vector equation

of the helicoid as z = f (x, y) and using the parametric equation

(6) r(x, y) = x i + y j + f (x, y)k

From equation (4) we let x = s cos t, y = s sin t and let

R = {(x, y) : −1 ≤ x ≤ 1, 0 ≤ y ≤
√

1− x2}
See Figure 2.

For (x, y) ∈ R \ {(0, 0)} we let

z = t = f (x, y) =







π + arctan(y/x) if − 1 ≤ x < 0

π/2 if x = 0

arctan(y/x) if 0 < x ≤ 1
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Figure 2: Bird’s-eye View of the Helicoid

Rather than deal with the complexities of f along the y-axis, we will

compute the surface of the portion of z = f (x, y) that lies in the first

quadrant and then attempt to exploit symmetry. So let R+ = R
x>0

and

r(x, y) = x i + y j + arctan
y

x
k, (x, y) ∈ R+

Then

rx × ry = ( i +
−y

x2 + y2
k)× ( j +

x

x2 + y2
k)

=
y

x2 + y2
i− x

x2 + y2
j + k

It follows by (3) that surface area that lies in the first octant is

A+ =

¨

R+

√

1 +
x2

(x2 + y2)2
+

y2

(x2 + y2)2
dA

=

¨

R+

√

1 +
x2 + y2

(x2 + y2)2
dA

=

¨

R+

√

1 +
1

x2 + y2
dA

Unfortunately, the integral is improper because of the integrand is

unbounded at the origin.
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Figure 3: The Region R′

Now consider the region (see Figure 3)

R′ = {(r, θ) : 0 < a ≤ r ≤ 1, 0 ≤ θ ≤ π/2}

The idea is that we can safely integrate over R′ and then let a go to

zero.

Switching to polar coordinates we obtain

¨

R′

√

1 +
1

x2 + y2
dA =

ˆ π/2

0

ˆ 1

a

√

1 +
1

r2
r dr dθ

=
π

2

ˆ 1

a

√
1 + r2 dr

It follows that
¨

R+

√

1 +
1

x2 + y2
dA =

π

2
lim
a→0+

ˆ 1

a

√
1 + r2 dr

=
π

2

ˆ 1

0

√
1 + r2 dr

We leave it as an exercise to show that

A = π

ˆ 1

0

√
1 + r2 dr

in agreement with (5).
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Example 6. Find the surface area of the cylinder in Example 2 for

0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.

Once again, we compute the first partials to obtain

ru = − sinu i +
3 cosu

4
k

rv = j

So that

ru × rv =
−3 cosu

4
i− sinuk

and hence

|ru × rv|2 =
9

16
cos2 u + sin2 u

So by (3) the area is

A =

¨

D

|ru × rv| dA

=

ˆ 1

0

ˆ 2π

0

√

9

16
cos2 u + sin2 u du dv

=

ˆ 2π

0

√

9

16
cos2 u + sin2 u du

Unfortunately, the last expression is an elliptical integral and cannot be

evaluated by elementary methods. However, we can approximate the

integral with the help of a CAS to obtain

A ≈ 5.525873040
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Figure 4: z = y + 2 sin x

Example 7. Find the area of surface z = y + 2 sinx that lies above the

region R in the xy-plane bounded by y = 0, y = sin 2x, 0 ≤ x ≤ π/2.

See Figure 4.

The given surface S can be defined by the vector equation

r(x, y) = 〈x, y, y + 2 sinx〉 , (x, y) ∈ R

Now

rx = 〈1, 0, 2 cosx〉

ry = 〈0, 1, 1〉
and

rx × ry = 〈−2 cosx, 1, 1〉
So that

|rx × ry| =
√
2 + 4 cos2 x

=
√

2 + 2(1 + cos 2x)
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Thus

area(S) =

¨

R

√
4 + 2 cos 2x dx dy

=

ˆ π/2

0

ˆ sin 2x

0

√
4 + 2 cos 2x dy dx

=

ˆ π/2

0

√
4 + 2 cos 2x sin 2x dx

=
1

4

ˆ 6

2

√
u du

=
63/2 − 23/2

6


