15.8 Triple Integrals in Cylindrical Coordinates

Integration in Cylindrical Coordinates

Definition. Cylindrical coordinates represent a point P in space by the ordered triple (r, θ, z) where

1. r and θ are the polar coordinates for the vertical projection of P onto the $x y$-plane.
2. z is the rectangular vertical coordinate of P.

The following equations relate rectangular coordinates (x, y, z) to
cylindrical coordinates (r, θ, z).

$$
\begin{aligned}
x & =r \cos \theta, \quad y=r \sin \theta, \quad z=z \\
\left(\text { Also, } r^{2}\right. & \left.=x^{2}+y^{2} \quad \text { and } \tan \theta=y / x\right)
\end{aligned}
$$

Remark. One must exercise care when using the second set of equations.

Example 1. Constant-Coordinate Equations

Describe the objects generated by the constant equations:

$$
\begin{aligned}
& r=r_{0} \\
& \theta=\theta_{0} \\
& z=z_{0}
\end{aligned}
$$

Suppose that $f(r, \theta, z)$ is defined on a closed bounded region D in space. Can we define the integral of f over D ? Proceeding in the usual way (that is, partitioning the region D, etc.), we obtain the following (Riemann) sum

$$
S_{n}=\sum_{k=1}^{n} f\left(r_{k}, \theta_{k}, z_{k}\right) \triangle V_{k}
$$

where $\triangle V_{k}=\triangle z_{k} r_{k} \Delta r_{k} \triangle \theta_{k}$.

Now we take the limit of the above expression as $\|P\| \rightarrow 0$, where $\|P\|$ is the norm of the partition P. If the limit exists we say that f is integrable over D and write

$$
\begin{aligned}
\lim _{n \rightarrow \infty} S_{n} & =\iiint_{D} f d V \\
& =\iiint_{D} f(r, \theta, z) d z r d r d \theta
\end{aligned}
$$

It turns out that if f is continuous over the closed bounded region D then f is integrable (as long as D is "reasonable"). (See also the remarks following Example 2 below.)

Finding the limits of integration in cylindrical coordinates.

If $f(r, \theta, z)$ is continuous over a region $D \in \mathbb{R}^{3}$ then

$$
\begin{aligned}
\iiint_{D} f d V & =\iiint_{D} f(r, \theta, z) d z r d r d \theta \\
& =\int_{\theta=\alpha}^{\theta=\beta} \int_{r=h_{1}(\theta)}^{r=h_{2}(\theta)} \int_{z=g_{1}(r, \theta)}^{z=g_{2}(r, \theta)} f(r, \theta, z) d z r d r d \theta
\end{aligned}
$$

Example 2. Integrating in Cylindrical Coordinates

Let D be the solid right cylinder whose base is the region inside the circle (in the $x y$-plane) $r=\cos \theta$ and whose top lies in the plane $z=3-2 y$ (see sketch).

a. Set up the triple integral in cylindrical coordinates that gives the volume of D.

$$
\iiint_{D} d V=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\cos \theta} \int_{0}^{3-2 y} r d z d r d \theta
$$

Of course, $3-2 y=3-2 r \sin \theta$.
b. Find the volume of D by evaluating the iterated integral from part (a).

$$
\begin{aligned}
\iiint_{D} d V & =\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\cos \theta} \int_{0}^{3-2 y} r d z d r d \theta \\
& =\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\cos \theta} r(3-2 y) d r d \theta \\
& =\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\cos \theta}\left(3 r-2 r^{2} \sin \theta\right) d r d \theta \\
& =\left.\int_{-\pi / 2}^{\pi / 2}\left(\frac{3 r^{2}}{2}-\frac{2 r^{3} \sin \theta}{3}\right)\right|_{0} ^{\cos \theta} d \theta \\
& =\frac{1}{6} \int_{-\pi / 2}^{\pi / 2}\left(9 \cos ^{2} \theta-4 \cos ^{3} \theta \sin \theta\right) d \theta \\
& =\frac{9}{6} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \theta d \theta-\frac{4}{6} \int_{-\pi / 2}^{\pi / 2} \cos ^{3} \theta \sin \theta d \theta \\
& =\frac{3}{4} \int_{-\pi / 2}^{\pi / 2}(1+\cos 2 \theta) d \theta+\frac{2}{3} \int_{0}^{0} u^{3} d u
\end{aligned}
$$

The second integral above is obviously 0 . Thus

$$
\begin{aligned}
\iiint_{D} d V & =\frac{3}{4} \int_{-\pi / 2}^{\pi / 2}(1+\cos 2 \theta) d \theta+0 \\
& =\left.\frac{3}{4}\left(\theta+\frac{\sin 2 \theta}{2}\right)\right|_{-\pi / 2} ^{\pi / 2}=\frac{3 \pi}{4}
\end{aligned}
$$

Remark. It is easy to check that

$$
\int_{0}^{\pi} \int_{0}^{\cos \theta} \int_{0}^{3-2 y} r d z d r d \theta=\frac{3 \pi}{4}
$$

However, one must proceed with caution as the following example illustrates. We leave the evaluation of the following integral as an exercise.

$$
\begin{equation*}
\int_{0}^{1} \int_{-\sqrt{x-x^{2}}}^{\sqrt{x-x^{2}}} \tan ^{-1}(y / x) d y d x=0 \tag{1}
\end{equation*}
$$

What happens when we convert (1) to the equivalent integral in polar coordinates.

$$
\int_{0}^{1} \int_{-\sqrt{x-x^{2}}}^{\sqrt{x-x^{2}}} \tan ^{-1}(y / x) d y d x=\int_{\alpha}^{\beta} \int_{0}^{\cos \theta} \theta r d r d \theta
$$

$$
\begin{equation*}
=\frac{1}{2} \int_{\alpha}^{\beta} \theta \cos ^{2} \theta d \theta \tag{2}
\end{equation*}
$$

We now have two obvious choices for α and β.
If we let $\alpha=-\pi / 2$ and $\beta=\pi / 2$, then the integral in (2) evaluates to 0 since integrand $\theta \cos ^{2} \theta$ is odd.

On the other hand, it is easy to see that

$$
\frac{1}{2} \int_{0}^{\pi} \theta \cos ^{2} \theta d \theta>0
$$

since $\theta \cos ^{2} \theta>0$ for $0<\theta<\pi / 2$ and $\pi / 2<\theta<\pi$. This in contrary to the result above. It is beyond the scope of the course to go into too much detail about this issue. So we conclude with a simple warning to use caution when evaluating similar integrals.

Example 3. Explain why the limits of integration of the outside integral in the previous example must be $\theta=0$ to $\theta=\pi$. Or more precisely, why they should be $\theta=-\pi / 2$ to $\theta=\pi / 2$.

To see this we sketch the polar equation $r=\cos \theta$ by "plotting points".
It's a bit easier to also sketch the graph of $r=\cos \theta$ in the $r \theta$-coordinate system instead of setting up a table of inputs, θ, and outputs, $r=f(\theta)$.

First try $0 \leq \theta \leq \frac{\pi}{2}$.

Now sketch the portion for $\frac{\theta}{2} \leq \theta \leq \pi$.

The dashed red curve in the sketch above is for the polar equation
$r=|\cos \theta|, \pi / 2 \leq \theta \leq \pi$. Of course, we already knew that the graph of the given polar equation was a circle of radius $1 / 2$ centered at $(1 / 2,0)$ since $r=\cos \theta \Longrightarrow r^{2}=r \cos \theta$. Converting to rectangular coordinates we obtain

$$
x^{2}+y^{2}=x \quad \Longrightarrow \quad(x-1 / 2)^{2}+y^{2}=1 / 4
$$

However, we were unsure which values of θ were necessary to generate a complete circle. It follows just as easily that we could also "parameterize" the circle using $-\pi / 2 \leq \theta \leq \pi / 2$.

Example 4. Find the volume of the solid that lies between the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4$.

It follows that the volume is given by

$$
\begin{aligned}
\mathbf{V} & =\int_{0}^{2 \pi} \int_{0}^{2} \int_{x^{2}+y^{2}}^{4} d z r d r d \theta \\
& =2 \pi \int_{0}^{2} \int_{x^{2}+y^{2}}^{4} d z r d r \\
& =2 \pi \int_{0}^{2}\left(4-x^{2}-y^{2}\right) r d r \\
& =2 \pi \int_{0}^{2}\left(4-r^{2}\right) r d r \\
& =\vdots \\
& =8 \pi
\end{aligned}
$$

Notice also that this solid can be recognized as a solid of revolution. In
other words, we can use techniques from Calculus II to compute the volume.

Now the cross sections perpendicular to the z-axis are disks of radius \sqrt{z}. It follows that the cross-sectional area is given by the formula $A(z)=\pi(\sqrt{z})^{2}=\pi z$ and hence the volume of revolution is

$$
\begin{aligned}
V & =\int_{0}^{4} A(z) d z \\
& =\pi \int_{0}^{4} z d z \\
& =\left.\frac{\pi}{2} z^{2}\right|_{0} ^{4} \\
& =8 \pi
\end{aligned}
$$

as we saw above.

Example 5. Ice-Cream Cone

Let D be the region (an ice-cream cone) bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and above by the paraboloid $z=2-x^{2}-y^{2}$.

Set up the triple integral using cylindrical coordinates that give the volume using each of the following orders of integration.

Notice that the surfaces intersect at $z=1$ and that the projection onto the $x y$-plane is the unit disk.

$$
\begin{aligned}
V & =\iiint_{D} r d z d r d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=1} \int_{z=r}^{z=2-r^{2}} r d z d r d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=1} r\left(2-r^{2}-r\right) d r d \theta \\
& =\left.\int_{\theta=0}^{\theta=2 \pi}\left(r^{2}-\frac{r^{4}}{4}-\frac{r^{3}}{3}\right)\right|_{r=0} ^{r=1} d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi}\left(\frac{5}{12}\right) d \theta \\
& =\frac{5 \pi}{6}
\end{aligned}
$$

Example 6. Switching the Order of Integration (Again)

Redo the last example by changing the order of integration.
a. First try $d r d z d \theta$

Figure 1: Cutaway View

Notice that if we first integrate with respect to r, we see that $0 \leq r \leq z$ for $0 \leq z \leq 1$ and $0 \leq r \leq \sqrt{2-z}$ if $1 \leq z \leq 2$ (see figure 1).

$$
\begin{aligned}
V= & \iiint_{D} r d r d z d \theta \\
= & \iiint_{\text {Cone }} r d r d z d \theta+\iiint_{\text {Cream }} r d r d z d \theta \\
= & \int_{\theta=0}^{\theta=2 \pi} \int_{z=0}^{z=1} \int_{r=0}^{r=z} r d r d z d \theta \\
& \quad+\int_{\theta=0}^{\theta=2 \pi} \int_{z=1}^{z=2} \int_{r=0}^{r=\sqrt{2-z}} r d r d z d \theta \\
= & 2 \pi \int_{z=0}^{z=1} \int_{r=0}^{r=z} r d r d z+2 \pi \int_{z=1}^{z=2} \int_{r=0}^{r=\sqrt{2-z}} r d r d z \\
= & 2 \pi \int_{0}^{1} \frac{z^{2}}{2} d z+2 \pi \int_{1}^{2} \frac{2-z}{2} d z \\
= & 2 \pi\left(\left.\frac{z^{3}}{6}\right|_{0} ^{1}+\left.\frac{4 z-z^{2}}{4}\right|_{1} ^{2}\right) \\
= & 2 \pi\left(\frac{1}{6}+\frac{1}{4}\right) \\
= & \frac{5 \pi}{6}
\end{aligned}
$$

b. $d \theta d z d r$

$$
\begin{aligned}
V & =\iiint_{D} r d \theta d z d r \\
& =\int_{r=0}^{r=1} \int_{z=r}^{z=2-r^{2}} \int_{\theta=0}^{\theta=2 \pi} r d \theta d z d r \\
& =\ldots \\
& =\frac{5 \pi}{6}
\end{aligned}
$$

Example 7. Let $a>0$ and let D be the solid cut by the cylinder $r=a \cos \theta$ and bounded above and below by a sphere of radius a centered at the origin. Express the volume of D as a triple integral in cylindrical coordinates and evaluate.

We have

$$
\begin{aligned}
V & =\int_{-\pi / 2}^{\pi / 2} \int_{0}^{a \cos \theta} \int_{-\sqrt{a^{2}-r^{2}}}^{\sqrt{a^{2}-r^{2}}} r d z d r d \theta \\
& =2 \int_{-\pi / 2}^{\pi / 2} \int_{0}^{a \cos \theta} \int_{0}^{\sqrt{a^{2}-r^{2}}} r d z d r d \theta \\
& =2 \int_{-\pi / 2}^{\pi / 2} \int_{0}^{a \cos \theta} r \sqrt{a^{2}-r^{2}} d r d \theta \\
& =\int_{-\pi / 2}^{\pi / 2} \int_{a^{2} \sin ^{2} \theta}^{a^{2}} \sqrt{u} d u d \theta, \quad\left(u=a^{2}-r^{2}, \text { etc. }\right) \\
& =\left.\frac{2}{3} \int_{-\pi / 2}^{\pi / 2} u^{3 / 2}\right|_{a^{2} \sin ^{2} \theta} ^{a^{2}} d \theta \\
& =\frac{2 a^{3}}{3} \int_{-\pi / 2}^{\pi / 2}\left(1-|\sin \theta|^{3}\right) d \theta \\
& =\frac{2 \pi a^{3}}{3}-\frac{4 a^{3}}{3} \int_{0}^{\pi / 2} \sin ^{3} \theta d \theta \\
& =\frac{2 a^{3}}{3}\left(\pi-\frac{4}{3}\right)
\end{aligned}
$$

