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15.8 Triple Integrals in Cylindrical Coordinates

Integration in Cylindrical Coordinates

Definition. Cylindrical coordinates represent a point P in space

by the ordered triple (r, θ, z) where

1. r and θ are the polar coordinates for the vertical projection of P

onto the xy-plane.

2. z is the rectangular vertical coordinate of P .

x

y

z

b

b

P (r, θ, z)

The following equations relate rectangular coordinates (x, y, z) to
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cylindrical coordinates (r, θ, z).

x = r cos θ, y = r sin θ, z = z
(

Also, r2 = x2 + y2 and tan θ = y/x
)

Remark. One must exercise care when using the second set of

equations.
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Example 1. Constant-Coordinate Equations

Describe the objects generated by the constant equations:

r = r0

θ = θ0

z = z0
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x

y

z

Suppose that f (r, θ, z) is defined on a closed bounded region D in

space. Can we define the integral of f over D? Proceeding in the usual

way (that is, partitioning the region D, etc.), we obtain the following

(Riemann) sum

Sn =

n
∑

k=1

f (rk, θk, zk) △Vk

where △Vk = △zk rk △rk △θk.
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Now we take the limit of the above expression as ‖P‖ → 0, where ‖P‖
is the norm of the partition P . If the limit exists we say that f is

integrable over D and write

lim
n→∞

Sn =

˚

D

f dV

=

˚

D

f (r, θ, z) dz r dr dθ

It turns out that if f is continuous over the closed bounded region D

then f is integrable (as long as D is “reasonable”). (See also the

remarks following Example 2 below.)
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Finding the limits of integration in cylindrical
coordinates.

x
y

z

If f (r, θ, z) is continuous over a region D ∈ R
3 then

˚

D

f dV =

˚

D

f (r, θ, z) dz r dr dθ

=

ˆ θ=β

θ=α

ˆ r=h2(θ)

r=h1(θ)

ˆ z=g2(r,θ)

z=g1(r,θ)

f (r, θ, z) dz r dr dθ
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Example 2. Integrating in Cylindrical Coordinates

Let D be the solid right cylinder whose base is the region inside the

circle (in the xy-plane) r = cos θ and whose top lies in the plane

z = 3− 2y (see sketch).

x

y

z
z = 3− 2y

r = cos θ

a. Set up the triple integral in cylindrical coordinates that gives the

volume of D.

˚

D

dV =

ˆ π/2

−π/2

ˆ cos θ

0

ˆ 3−2y

0

r dz dr dθ

Of course, 3− 2y = 3− 2r sin θ.
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b. Find the volume of D by evaluating the iterated integral from part

(a).

˚

D

dV =

ˆ π/2

−π/2

ˆ cos θ

0

ˆ 3−2y

0

r dz dr dθ

=

ˆ π/2

−π/2

ˆ cos θ

0

r(3− 2y) dr dθ

=

ˆ π/2

−π/2

ˆ cos θ

0

(

3r − 2r2 sin θ
)

dr dθ

=

ˆ π/2

−π/2

(

3r2

2
− 2r3 sin θ

3

) cos θ

0

dθ

=
1

6

ˆ π/2

−π/2

(

9 cos2 θ − 4 cos3 θ sin θ
)

dθ

=
9

6

ˆ π/2

−π/2

cos2 θ dθ − 4

6

ˆ π/2

−π/2

cos3 θ sin θ dθ

=
3

4

ˆ π/2

−π/2

(1 + cos 2θ) dθ +
2

3

ˆ 0

0

u3 du

The second integral above is obviously 0. Thus
˚

D

dV =
3

4

ˆ π/2

−π/2

(1 + cos 2θ) dθ + 0

=
3

4

(

θ +
sin 2θ

2

) π/2

−π/2

=
3π

4
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Remark. It is easy to check that
ˆ π

0

ˆ cos θ

0

ˆ 3−2y

0

r dz dr dθ =
3π

4

However, one must proceed with caution as the following example

illustrates. We leave the evaluation of the following integral as an

exercise.

(1)

ˆ 1

0

ˆ

√
x−x2

−
√
x−x2

tan−1(y/x) dy dx = 0

What happens when we convert (1) to the equivalent integral in polar

coordinates.
ˆ 1

0

ˆ

√
x−x2

−
√
x−x2

tan−1(y/x) dy dx =

ˆ β

α

ˆ cos θ

0

θ r dr dθ

=
1

2

ˆ β

α

θ cos2 θ dθ(2)

We now have two obvious choices for α and β.

If we let α = −π/2 and β = π/2, then the integral in (2) evaluates to 0

since integrand θ cos2 θ is odd.

On the other hand, it is easy to see that

1

2

ˆ π

0

θ cos2 θ dθ > 0

since θ cos2 θ > 0 for 0 < θ < π/2 and π/2 < θ < π. This in contrary to

the result above. It is beyond the scope of the course to go into too

much detail about this issue. So we conclude with a simple warning to

use caution when evaluating similar integrals.
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Example 3. Explain why the limits of integration of the outside

integral in the previous example must be θ = 0 to θ = π. Or more

precisely, why they should be θ = −π/2 to θ = π/2.

To see this we sketch the polar equation r = cos θ by “plotting points”.

It’s a bit easier to also sketch the graph of r = cos θ in the rθ-coordinate

system instead of setting up a table of inputs, θ, and outputs, r = f (θ).

First try 0 ≤ θ ≤ π

2
.

1 2 3 4 5

−1

1

θ

r

1−1

1

−1

x

y

Now sketch the portion for
θ

2
≤ θ ≤ π.

1 2 3 4 5

−1

1

θ

r

1−1

1

−1

x

y

The dashed red curve in the sketch above is for the polar equation
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r = | cos θ|, π/2 ≤ θ ≤ π. Of course, we already knew that the graph of

the given polar equation was a circle of radius 1/2 centered at (1/2, 0)

since r = cos θ =⇒ r2 = r cos θ. Converting to rectangular coordinates

we obtain

x2 + y2 = x =⇒ (x− 1/2)2 + y2 = 1/4

However, we were unsure which values of θ were necessary to

generate a complete circle. It follows just as easily that we could also

“parameterize” the circle using −π/2 ≤ θ ≤ π/2.
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Example 4. Find the volume of the solid that lies between the

paraboloid z = x2 + y2 and the plane z = 4.

x
y

z

z = x2 + y2

It follows that the volume is given by

V =

ˆ 2π

0

ˆ 2

0

ˆ 4

x2+y2
dz rdr dθ

= 2π

ˆ 2

0

ˆ 4

x2+y2
dz rdr

= 2π

ˆ 2

0

(4− x2 − y2) rdr

= 2π

ˆ 2

0

(4− r2)rdr

= ...

= 8π

Notice also that this solid can be recognized as a solid of revolution. In
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other words, we can use techniques from Calculus II to compute the

volume.

x

y

z

z = x2

Now the cross sections perpendicular to the z-axis are disks of radius√
z. It follows that the cross-sectional area is given by the formula

A(z) = π (
√
z)

2
= πz and hence the volume of revolution is

V =

ˆ 4

0

A(z) dz

= π

ˆ 4

0

z dz

=
π

2
z2

4

0

= 8π

as we saw above.
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Example 5. Ice-Cream Cone

Let D be the region (an ice-cream cone) bounded below by the cone

z =
√

x2 + y2 and above by the paraboloid z = 2− x2 − y2.

Set up the triple integral using cylindrical coordinates that give the

volume using each of the following orders of integration.

x

y

z

x

y

z
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x y

z

Notice that the surfaces intersect at z = 1 and that the projection onto

the xy-plane is the unit disk.
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V =

˚

D

r dz dr dθ

=

ˆ θ=2π

θ=0

ˆ r=1

r=0

ˆ z=2−r2

z=r

r dz dr dθ

=

ˆ θ=2π

θ=0

ˆ r=1

r=0

r
(

2− r2 − r
)

dr dθ

=

ˆ θ=2π

θ=0

(

r2 − r4

4
− r3

3

) r=1

r=0

dθ

=

ˆ θ=2π

θ=0

(

5

12

)

dθ

=
5π

6
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Example 6. Switching the Order of Integration (Again)

Redo the last example by changing the order of integration.

a. First try dr dz dθ

x

y

z

Figure 1: Cutaway View

Notice that if we first integrate with respect to r, we see that

0 ≤ r ≤ z for 0 ≤ z ≤ 1 and 0 ≤ r ≤
√
2− z if 1 ≤ z ≤ 2 (see figure

1).
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V =

˚

D

r dr dz dθ

=

˚

Cone

r dr dz dθ +

˚

Cream

r dr dz dθ

=

ˆ θ=2π

θ=0

ˆ z=1

z=0

ˆ r=z

r=0

r dr dz dθ

+

ˆ θ=2π

θ=0

ˆ z=2

z=1

ˆ r=
√
2−z

r=0

r dr dz dθ

= 2π

ˆ z=1

z=0

ˆ r=z

r=0

r dr dz + 2π

ˆ z=2

z=1

ˆ r=
√
2−z

r=0

r dr dz

= 2π

ˆ 1

0

z2

2
dz + 2π

ˆ 2

1

2− z

2
dz

= 2π

(

z3

6

1

0

+
4z − z2

4

2

1

)

= 2π

(

1

6
+

1

4

)

=
5π

6

b. dθ dz dr
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V =

˚

D

r dθ dz dr

=

ˆ r=1

r=0

ˆ z=2−r2

z=r

ˆ θ=2π

θ=0

r dθ dz dr

= . . .

=
5π

6
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Example 7. Let a > 0 and let D be the solid cut by the cylinder

r = a cos θ and bounded above and below by a sphere of radius a

centered at the origin. Express the volume of D as a triple integral in

cylindrical coordinates and evaluate.

We have

V =

ˆ π/2

−π/2

ˆ a cos θ

0

ˆ

√
a2−r2

−
√
a2−r2

r dz dr dθ

= 2

ˆ π/2

−π/2

ˆ a cos θ

0

ˆ

√
a2−r2

0

r dz dr dθ

= 2

ˆ π/2

−π/2

ˆ a cos θ

0

r
√

a2 − r2 dr dθ

=

ˆ π/2

−π/2

ˆ a2

a2 sin2 θ

√
u du dθ, (u = a2 − r2, etc.)

=
2

3

ˆ π/2

−π/2

u3/2
a2

a2 sin2 θ

dθ

=
2a3

3

ˆ π/2

−π/2

(

1− | sin θ|3
)

dθ

=
2πa3

3
− 4a3

3

ˆ π/2

0

sin3 θ dθ

...

=
2a3

3

(

π − 4

3

)


