15.1 Review of the Definite Integral

In a first semester calculus class, one eventually learns about something called a Riemann Sum

(1)
$$S_P = \sum_{k=1}^n f(c_k) \,\Delta x_k$$

where f is a function defined over some finite interval [a, b] with partition P.

It turned out to be important to investigate the following limit

$$\lim_{\|P\| \to 0} S_P = \lim_{\|P\| \to 0} \sum_{k=1}^n f(c_k) \, \Delta x_k$$

which is known to exist whenever f satisfies certain properties (e.g., if it is continuous, etc.). In such cases we define the definite (or Riemann) integral of f over the interval [a, b] by

(2)
$$\int_{a}^{b} f(x) \, dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \, \Delta x_k$$

It was later proven that the definite integral could be easily evaluated (in many cases) by using the **Fundamental Theorem of Calculus**. That is,

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

where F is any antiderivative of f.

The definite integral displayed several useful properties.

Properties of the Definite Integrals

1.
$$\int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx, \quad k \in \mathbb{R}$$

2.
$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

3.
$$f(x) \ge 0 \implies \int_{a}^{b} f(x) dx \ge 0$$

4.
$$f(x) \ge g(x) \implies \int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$$

5.
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{a} f(x) dx$$

The first two properties follow immediately from the definition (2). (In higher level mathematics, we say the integral operator is "linear".) Property 4 follows immediately from properties 1 and 3. Property 3 is also a direct consequence of the definition. It allowed one to define the so-called "area under the curve".

Definition. Let f be an integrable function on [a, b]. If $f(x) \ge 0$ for all $x \in [a, b]$, then we define the **area under the curve** y = f(x) by

Area =
$$\int_{a}^{b} f(x) \, dx$$

Double Integrals

Suppose (temporarily) that $f(x, y) \ge 0$ is defined over a rectangular region R in the plane given by

$$a \le x \le b$$
$$c \le y \le d$$

and suppose that wish to find the volume below the surface z = f(x, y).

As we did in first semester calculus, we let P_x and P_y be partitions of [a, b] and [c, d] respectively. We may number these sub-rectangles, say R_1, R_2, \ldots, R_n . Now let ΔA_k be the area of rectangle R_k . Then

$$\Delta A_k = \Delta x \, \Delta y$$

Now we choose an arbitrary point (x_k, y_k) in the rectangle R_k .

A typical rectangular solid is shown in the sketch above.

Now form the (Riemann) Sum

(3)
$$S_n = \sum_{k=1}^n f(x_k, y_k) \ \Delta A_k$$

Now for any partition P of rectangles, we define the **norm of** P, ||P||, as the largest length or width of any of the rectangles. From our experience with area under a curve, we suspect that the quantity in (3) is a good approximation of the volume below the surface z = f(x, y) whenever ||P|| is sufficiently small.

We may then consider the following limit

(4)
$$\lim_{\|P\|\to 0}\sum_{k=1}^n f(x_k, y_k) \ \Delta A_k$$

Now if f is continuous on R (and in other cases) we know that the limit in (4) exists. The resulting limit is called the **double integral** and denoted by

$$\iint_R f(x,y) \, dA \quad \text{or} \quad \iint_R f(x,y) \, dx \, dy$$

It turns out that we can drop the requirement that $f(x, y) \ge 0$. We have **Definition.** The double integral of *f* over a rectangle *R* is

(5)
$$\iint_{R} f(x,y) \, dA = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(x_{k},y_{k}) \, \Delta A_{k}$$

provided the limit exists. Whenever the limit in (5) exists, we say that f is (Riemann) integrable. So, for example, continuous functions are integrable.

15.1

Theorem 1. Properties of Double Integrals

1.
$$\iint_R k f(x, y) \, dA = k \iint_R f(x, y) \, dA, \qquad k \in \mathbb{R}$$

2.
$$\iint_{R} (f \pm g) \, dA = \iint_{R} f \, dA \pm \iint_{R} g \, dA$$

3.
$$f(x,y) \ge 0 \implies \iint_R f(x,y) \, dA \ge 0$$

4.
$$f(x,y) \ge g(x,y)$$
 on $R \implies \iint_R f \, dA \ge \iint_R g \, dA$

5. If $R = R_1 \cup R_2$ where R_1 and R_2 are nonoverlapping rectangles then

$$\iint_R f(x,y) \, dA = \iint_{R_1} f(x,y) \, dA + \iint_{R_2} f(x,y) \, dA$$

As a consequence of item 3 above, we have

Definition. Let $f(x, y) \ge 0$ over a rectangle *R*. Then the volume below the surface z = f(x, y) is

(6)
$$V = \iint_R f(x, y) \, dA$$

provided the integral exists.

Example 1. Let *R* be the rectangle given by $0 \le x \le 1$ and $0 \le y \le 2$. Use Theorem 1 and (6) to evaluate the following double integrals.

a.
$$\iint_R 3 \, dA$$

b.
$$\iint_R x \, dA$$

c.
$$\iint_R (3x+2y) \, dA$$

$$\mathsf{d.} \iint_R x^2 \, dA$$

e.
$$\iint_R xy \, dA$$

A few sketches of z = xy.

