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15.1 Review of the Definite Integral

In a first semester calculus class, one eventually learns about

something called a Riemann Sum

(1) SP =

n∑

k=1

f (ck)∆xk

where f is a function defined over some finite interval [a, b] with

partition P .

It turned out to be important to investigate the following limit

lim
‖P‖→0

SP = lim
‖P‖→0

n∑

k=1

f (ck)∆xk

which is known to exist whenever f satisfies certain properties (e.g., if

it is continuous, etc.). In such cases we define the definite (or

Riemann) integral of f over the interval [a, b] by

(2)

ˆ b

a

f (x) dx = lim
‖P‖→0

n∑

k=1

f (ck)∆xk

It was later proven that the definite integral could be easily evaluated

(in many cases) by using the Fundamental Theorem of Calculus.

That is,
ˆ b

a

f (x) dx = F (b)− F (a)

where F is any antiderivative of f .
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The definite integral displayed several useful properties.

Properties of the Definite Integrals

1.

ˆ b

a

k f (x) dx = k

ˆ b

a

f (x) dx, k ∈ R

2.

ˆ b

a

(f (x)± g(x)) dx =

ˆ b

a

f (x) dx±

ˆ b

a

g(x) dx

3. f (x) ≥ 0 =⇒

ˆ b

a

f (x) dx ≥ 0

4. f (x) ≥ g(x) =⇒

ˆ b

a

f (x) dx ≥

ˆ b

a

g(x) dx

5.

ˆ b

a

f (x) dx =

ˆ c

a

f (x) dx +

ˆ a

c

f (x) dx

The first two properties follow immediately from the definition (2). (In

higher level mathematics, we say the integral operator is “linear”.)

Property 4 follows immediately from properties 1 and 3. Property 3 is

also a direct consequence of the definition. It allowed one to define the

so-called “area under the curve”.

Definition. Let f be an integrable function on [a, b]. If f (x) ≥ 0 for all

x ∈ [a, b], then we define the area under the curve y = f (x) by

Area =

ˆ b

a

f (x) dx
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Double Integrals

R

z = f (x, y)

Suppose (temporarily) that f (x, y) ≥ 0 is defined over a rectangular

region R in the plane given by

a ≤ x ≤ b

c ≤ y ≤ d

and suppose that wish to find the volume below the surface z = f (x, y).

As we did in first semester calculus, we let Px and Py be partitions of

[a, b] and [c, d] respectively. We may number these sub-rectangles, say

R1, R2, . . . , Rn. Now let ∆Ak be the area of rectangle Rk. Then

∆Ak = ∆x∆y

Now we choose an arbitrary point (xk, yk) in the rectangle Rk.



15.1 4

R

z = f (x, y)

b

b

∆Ak

∆Ak

A typical rectangular solid is shown in the sketch above.

Now form the (Riemann) Sum

(3) Sn =

n∑

k=1

f (xk, yk) ∆Ak

Now for any partition P of rectangles, we define the norm of P , ‖P‖,

as the largest length or width of any of the rectangles. From our

experience with area under a curve, we suspect that the quantity in (3)

is a good approximation of the volume below the surface z = f (x, y)

whenever ‖P‖ is sufficiently small.
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We may then consider the following limit

(4) lim
‖P‖→0

n∑

k=1

f (xk, yk) ∆Ak

Now if f is continuous on R (and in other cases) we know that the limit

in (4) exists. The resulting limit is called the double integral and

denoted by

¨

R

f (x, y) dA or

¨

R

f (x, y) dx dy

It turns out that we can drop the requirement that f (x, y) ≥ 0. We have

Definition. The double integral of f over a rectangle R is

(5)

¨

R

f (x, y) dA = lim
‖P‖→0

n∑

k=1

f (xk, yk) ∆Ak

provided the limit exists. Whenever the limit in (5) exists, we say that f

is (Riemann) integrable. So, for example, continuous functions are

integrable.
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Theorem 1. Properties of Double Integrals

1.

¨

R

k f (x, y) dA = k

¨

R

f (x, y) dA, k ∈ R

2.

¨

R

(f ± g) dA =

¨

R

f dA±

¨

R

g dA

3. f (x, y) ≥ 0 =⇒

¨

R

f (x, y) dA ≥ 0

4. f (x, y) ≥ g(x, y) on R =⇒

¨

R

f dA ≥

¨

R

g dA

5. If R = R1 ∪R2 where R1 and R2 are nonoverlapping rectangles then

¨

R

f (x, y) dA =

¨

R1

f (x, y) dA +

¨

R2

f (x, y) dA

As a consequence of item 3 above, we have

Definition. Let f (x, y) ≥ 0 over a rectangle R. Then the volume below

the surface z = f (x, y) is

(6) V =

¨

R

f (x, y) dA

provided the integral exists.
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Example 1. Let R be the rectangle given by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2.

Use Theorem 1 and (6) to evaluate the following double integrals.

a.

¨

R

3 dA

b.

¨

R

x dA

c.

¨

R

(3x + 2y) dA

d.

¨

R

x2 dA

e.

¨

R

xy dA
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A few sketches of z = xy.
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