15.1 Review of the Definite Integral

In a first semester calculus class, one eventually learns about something called a Riemann Sum

$$
\begin{equation*}
S_{P}=\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k} \tag{1}
\end{equation*}
$$

where f is a function defined over some finite interval $[a, b]$ with partition P.

It turned out to be important to investigate the following limit

$$
\lim _{\|P\| \rightarrow 0} S_{P}=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}
$$

which is known to exist whenever f satisfies certain properties (e.g., if it is continuous, etc.). In such cases we define the definite (or Riemann) integral of f over the interval $[a, b]$ by

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k} \tag{2}
\end{equation*}
$$

It was later proven that the definite integral could be easily evaluated (in many cases) by using the Fundamental Theorem of Calculus. That is,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f.

The definite integral displayed several useful properties.

Properties of the Definite Integrals

1. $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x, \quad k \in \mathbb{R}$
2. $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
3. $f(x) \geq 0 \quad \Longrightarrow \quad \int_{a}^{b} f(x) d x \geq 0$
4. $f(x) \geq g(x) \quad \Longrightarrow \quad \int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$
5. $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{a} f(x) d x$

The first two properties follow immediately from the definition (2). (In higher level mathematics, we say the integral operator is "linear".) Property 4 follows immediately from properties 1 and 3 . Property 3 is also a direct consequence of the definition. It allowed one to define the so-called "area under the curve".

Definition. Let f be an integrable function on $[a, b]$. If $f(x) \geq 0$ for all $x \in[a, b]$, then we define the area under the curve $y=f(x)$ by

$$
\text { Area }=\int_{a}^{b} f(x) d x
$$

Double Integrals

Suppose (temporarily) that $f(x, y) \geq 0$ is defined over a rectangular region R in the plane given by

$$
\begin{aligned}
& a \leq x \leq b \\
& c \leq y \leq d
\end{aligned}
$$

and suppose that wish to find the volume below the surface $z=f(x, y)$.
As we did in first semester calculus, we let P_{x} and P_{y} be partitions of $[a, b]$ and $[c, d]$ respectively. We may number these sub-rectangles, say $R_{1}, R_{2}, \ldots, R_{n}$. Now let ΔA_{k} be the area of rectangle R_{k}. Then

$$
\Delta A_{k}=\Delta x \Delta y
$$

Now we choose an arbitrary point $\left(x_{k}, y_{k}\right)$ in the rectangle R_{k}.

A typical rectangular solid is shown in the sketch above.
Now form the (Riemann) Sum
(3)

$$
S_{n}=\sum_{k=1}^{n} f\left(x_{k}, y_{k}\right) \Delta A_{k}
$$

Now for any partition P of rectangles, we define the norm of $P,\|P\|$, as the largest length or width of any of the rectangles. From our experience with area under a curve, we suspect that the quantity in (3) is a good approximation of the volume below the surface $z=f(x, y)$ whenever $\|P\|$ is sufficiently small.

We may then consider the following limit
(4)

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}, y_{k}\right) \Delta A_{k}
$$

Now if f is continuous on R (and in other cases) we know that the limit in (4) exists. The resulting limit is called the double integral and denoted by

$$
\iint_{R} f(x, y) d A \text { or } \iint_{R} f(x, y) d x d y
$$

It turns out that we can drop the requirement that $f(x, y) \geq 0$. We have Definition. The double integral of f over a rectangle R is

$$
\begin{equation*}
\iint_{R} f(x, y) d A=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}, y_{k}\right) \Delta A_{k} \tag{5}
\end{equation*}
$$

provided the limit exists. Whenever the limit in (5) exists, we say that f is (Riemann) integrable. So, for example, continuous functions are integrable.

Theorem 1. Properties of Double Integrals

1. $\iint_{R} k f(x, y) d A=k \iint_{R} f(x, y) d A, \quad k \in \mathbb{R}$
2. $\iint_{R}(f \pm g) d A=\iint_{R} f d A \pm \iint_{R} g d A$
3. $f(x, y) \geq 0 \quad \Longrightarrow \quad \iint_{R} f(x, y) d A \geq 0$
4. $f(x, y) \geq g(x, y)$ on $R \quad \Longrightarrow \quad \iint_{R} f d A \geq \iint_{R} g d A$
5. If $R=R_{1} \cup R_{2}$ where R_{1} and R_{2} are nonoverlapping rectangles then

$$
\iint_{R} f(x, y) d A=\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A
$$

As a consequence of item 3 above, we have
Definition. Let $f(x, y) \geq 0$ over a rectangle R. Then the volume below the surface $z=f(x, y)$ is
(6)

$$
V=\iint_{R} f(x, y) d A
$$

provided the integral exists.

Example 1. Let R be the rectangle given by $0 \leq x \leq 1$ and $0 \leq y \leq 2$. Use Theorem 1 and (6) to evaluate the following double integrals.
a. $\iint_{R} 3 d A$
b. $\iint_{R} x d A$
c. $\iint_{R}(3 x+2 y) d A$
d. $\iint_{R} x^{2} d A$
e. $\iint_{R} x y d A$

A few sketches of $z=x y$.

