16.3 Path Independence and Conservative Fields

Definition. Path Independence

Let \mathbf{F} be a field defined on an open region D in space, and suppose that the (work) integral $\int_{A}^{B} \mathbf{F} \cdot d \mathbf{r}$ is the same for all paths from A to B (in D). Then the integral $\int \mathbf{F} \cdot d \mathbf{r}$ is path independent in D and the field \mathbf{F} is conservative on D.

It turns out that a field \mathbf{F} is conservative if and only if $\mathbf{F}=\nabla f$, that is, if and only if \mathbf{F} is a gradient vector field for some differentiable function f.

Definition. Potential Functions

If \mathbf{F} is a field defined on D and $\mathbf{F}=\nabla f$ for some scalar function f on D, then f is called a potential function for \mathbf{F}.

Some important assumptions:

1. All curves are piecewise smooth.
2. If $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ then M, N, P have continuous first partials.
3. D is an open, connected region in space.

Theorem 1. The Fundamental Theorem of Line Integrals

1. Let $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ be a vector field with continuous components throughout an open connected region D in space. Then there exists a differentiable function f such that

$$
\mathbf{F}=\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

if and only if for all points A and B in D the integral $\int_{A}^{B} \mathbf{F} \cdot d \mathbf{r}$ is path independent in D.
2. In this case
(1)

$$
\int_{A}^{B} \mathbf{F} \cdot d \mathbf{r}=\int_{A}^{B} \nabla f \cdot d \mathbf{r}=f(B)-f(A)
$$

Example 1. Let F be the force field

$$
\mathbf{F}=y \sin z \mathbf{i}+x \sin z \mathbf{j}+(x y \cos z+\sin z) \mathbf{k}
$$

and let $A=(1,1, \pi / 6)$ and $B=(2,3, \pi / 2)$. Find the work done along the straight line connecting A to B.

Notice that $f(x, y, z)=x y \sin z-\cos z$ is a potential function for \mathbf{F} since

$$
\nabla f=y \sin z \mathbf{i}+x \sin z \mathbf{j}+(x y \cos z+\sin z) \mathbf{k}
$$

In other words, the field \mathbf{F} is conservative. So by equation (1)

$$
\begin{aligned}
\int_{A}^{B} \mathbf{F} \cdot d \mathbf{r} & =\int_{A}^{B} \nabla f \cdot d \mathbf{r} \\
& =f(B)-f(A) \\
& =f(2,3, \pi / 2)-f(1,1, \pi / 6) \\
& =6-(1 / 2-\sqrt{3} / 2) \\
& =11 / 2+\sqrt{3} / 2
\end{aligned}
$$

Remark. We will see how to find f below.

Notice that if \mathbf{F} is conservative then the line integral around any closed curve is

$$
\int_{A}^{A} \mathbf{F} \cdot d \mathbf{r}=\int_{A}^{A} \nabla f \cdot d \mathbf{r}=f(A)-f(A)=0
$$

Theorem 2.

The following statements are equivalent:

1. $\int \mathbf{F} \cdot d \mathbf{r}=0$ around every closed curve in D.
2. The field \mathbf{F} is conservative on D.

Definition. Del Notation and Curl

We define a new object...the "del" operator:

$$
\nabla=\mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}
$$

(This is just a convenient notation to help remember some formulas below.)

We also define the curl of the vector field \mathbf{F} by

$$
\begin{aligned}
\text { curl } \mathbf{F} & =\nabla \times \mathbf{F} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & P
\end{array}\right| \\
& =\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) \mathbf{i} \\
& +\left(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}\right) \mathbf{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}
\end{aligned}
$$

Remark. We will discuss curl in more detail in the next section.

Example 2.

Find the curl of the vector field

$$
\mathbf{F}=y \sin z \mathbf{i}+x \sin z \mathbf{j}+(x y \cos z+\sin z) \mathbf{k}
$$

$$
\text { curl } \mathbf{F}=\nabla \times \mathbf{F}
$$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y \sin z & x \sin z & (x y \cos z+\sin z)
\end{array}\right| \\
& =\left(\frac{\partial(x y \cos z+\sin z)}{\partial y}-\frac{\partial(x \sin z)}{\partial z}\right) \mathbf{i} \\
& +\left(\frac{\partial(y \sin z)}{\partial z}-\frac{\partial(x y \cos z+\sin z)}{\partial x}\right) \mathbf{j} \\
& +\left(\frac{\partial(x \sin z)}{\partial x}-\frac{\partial(y \sin z)}{\partial y}\right) \mathbf{k} \\
& =(x \cos z-x \cos z) \mathbf{i}+(y \cos z-y \cos z) \mathbf{j} \\
& +(\sin z-\sin z) \mathbf{k} \\
& =\mathbf{0}
\end{aligned}
$$

The result from the last example was no coincidence. It turns out that a field is conservative if the curl is zero.

More precisely, suppose that

$$
\mathbf{F}=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}
$$

is a field whose component functions have continuous first partials and D is a simply connected region in space. Then \mathbf{F} is conservative on D if and only if

$$
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\mathbf{0}
$$

Example 3.

Show that $\mathbf{F}=y^{2} z^{3} \mathbf{i}+2 x y z^{3} \mathbf{j}+3 x y^{2} z^{2} \mathbf{k}$ is conservative.

$$
\begin{aligned}
& \nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{2} z^{3} & 2 x y z^{3} & 3 x y^{2} z^{2}
\end{array}\right| \\
&=\mathbf{i}\left(\frac{\partial\left(3 x y^{2} z^{2}\right)}{\partial y}-\frac{\partial\left(2 x y z^{3}\right)}{\partial z}\right)-\mathbf{j}\left(\frac{\partial\left(3 x y^{2} z^{2}\right)}{\partial x}-\frac{\partial\left(y^{2} z^{3}\right)}{\partial z}\right) \\
& \quad+\mathbf{k}\left(\frac{\partial\left(2 x y z^{3}\right)}{\partial x}-\frac{\partial\left(y^{2} z^{3}\right)}{\partial y}\right) \\
&=\mathbf{i}\left(6 x y z^{2}-6 x y z^{2}\right)-\mathbf{j}\left(3 y^{2} z^{2}-3 y^{2} z^{2}\right)+\mathbf{k}\left(2 y z^{3}-2 y z^{3}\right) \\
&=\mathbf{0}
\end{aligned}
$$

Finding Potential Functions

Suppose that $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is conservative. How do we find a function f such that $\nabla f=\mathbf{F}$? To find the function f, observe that it must satisfy the following partial differential equations (PDEs).

$$
\begin{equation*}
\frac{\partial f}{\partial x}=M, \quad \frac{\partial f}{\partial y}=N, \quad \frac{\partial f}{\partial z}=P \tag{2}
\end{equation*}
$$

We illustrate below.

Example 4.

Find the potential function f from Example 1.

Recall that

$$
\mathbf{F}=y \sin z \mathbf{i}+x \sin z \mathbf{j}+(x y \cos z+\sin z) \mathbf{k} .
$$

So by (2) we must solve the following partial differential equations, simultaneously.

$$
\begin{align*}
& \frac{\partial f}{\partial x}=y \sin z \tag{3}\\
& \frac{\partial f}{\partial y}=x \sin z \tag{4}\\
& \frac{\partial f}{\partial z}=x y \cos z+\sin z \tag{5}
\end{align*}
$$

Antidifferentiating (3) with respect to x yields

$$
f(x, y, z)=x y \sin z+C_{1}
$$

where C_{1} does not depend on x. Thus

$$
f(x, y, z)=x y \sin z+g(y, z)
$$

for some differentiable function g. We now have a "candidate" function to work. Specifically, f must satisfy the remaining partial differential equations, (4) and (5).

Now (4) implies

$$
x \sin z=\frac{\partial(x y \sin z+g(y, z))}{\partial y}=x \sin z+\frac{\partial g}{\partial y}
$$

It follows that g does not depend on y. In other words,

$$
f(x, y, z)=x y \sin z+h(z)
$$

for some differentiable function h. Finally, (5) implies

$$
x y \cos z+\sin z=\frac{\partial(x y \sin z+h(z))}{\partial z}=x y \cos z+h^{\prime}(z)
$$

It follows that $h(z)=-\cos z+C$ and hence

$$
f(x, y, z)=x y \sin z-\cos z+C
$$

Here C is an arbitrary constant. (Note: As usual, we chose to let $C=0$ in Example 1).

Exact Differential Forms

Definition. The expression

$$
\begin{equation*}
M d x+N d y+P d z \tag{6}
\end{equation*}
$$

is called a differential form. It is called exact on a region D if there is a real-valued function f defined on D such that

$$
\begin{equation*}
\underbrace{\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z}_{d f}=M d x+N d y+P d z \tag{7}
\end{equation*}
$$

Now if the differential form (6) is exact on a region D in space and f is a scalar function defined on D satisfying (7), and $A, B \in D$ then

$$
\begin{aligned}
\int_{A}^{B} M d x+N d y+P d z & =\int_{A}^{B} d f \\
& =f(B)-f(A)
\end{aligned}
$$

as a direct consequence of the Fundamental Theorem of Line Integrals (Theorem 1).

Notice that equation (7) is equivalent to the statement that the field $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is conservative. In other words, the differential form (6) is exact if and only if there a real-valued function f defined on D such that

$$
\begin{equation*}
\underbrace{\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z}}_{\nabla f} \mathbf{k})=M \mathbf{i}+N \mathbf{j}+P \mathbf{k} \tag{8}
\end{equation*}
$$

Example 5.

Show that $y^{2} z^{3} d x+2 x y z^{3} d y+3 x y^{2} z^{2} d z$ is exact and compute the integral

$$
\int_{(0,0,0)}^{(1,1 / 2,-3)} y^{2} z^{3} d x+2 x y z^{3} d y+3 x y^{2} z^{2} d z
$$

Let $f(x, y, z)=x y^{2} z^{3}$. Then

$$
d f=y^{2} z^{3} d x+2 x y z^{3} d y+3 x y^{2} z^{2} d z
$$

It follows that the given form is exact. Thus

$$
\int_{(0,0,0)}^{(1,1 / 2,-3)} y^{2} z^{3} d x+2 x y z^{3} d y+3 x y^{2} z^{2} d z
$$

$$
=\int_{(0,0,0)}^{(1,1 / 2,-3)} d f
$$

$$
=\left.f(x, y, z)\right|_{(0,0,0)} ^{(1,1 / 2,-3)}
$$

$$
=f(1,1 / 2,-3)-f(0,0,0)
$$

$$
=(1)\left((1 / 2)^{2}\right)\left((-3)^{3}\right)=-27 / 4
$$

What do conservative vector field look like?

We know that gradient vector fields are conservative. Consider the following example.

Example 6.

Let $f(x, y)=x^{2}+x y$. The gradient field, $\nabla f=(2 x+y) \mathbf{i}+x \mathbf{j}$, is shown in Figure 1. Now suppose that C is any smooth (simple, closed) curve in \mathbb{R}^{2}. Is it believable that the circulation integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$?

Figure 1: A Conservative Vector Field ∇f

We look at a few examples below.
(a) So let C be a circle of radius 2 centered at the origin. Verify that Theorem 2 holds.

$$
C: \mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}, \quad 0 \leq t \leq 2 \pi
$$

$M=2 x+y=4 \cos t+2 \sin t$
$N=x=2 \cos t$
$d x=-2 \sin t d t$
$d y=2 \cos t d t$

A direct calculation of the circulation integral yields

$$
\begin{aligned}
\oint_{C} M d x+N d y & =\int_{0}^{2 \pi}((4 \cos t+2 \sin t)(-2 \sin t)+(2 \cos t)(2 \cos t)) d t \\
& =4 \int_{0}^{2 \pi}\left(\cos ^{2} t-2 \sin t \cos t-\sin ^{2} t\right) d t \\
& =4 \int_{0}^{2 \pi}(\cos 2 t-\sin 2 t) d t \\
& =\left.2(\sin 2 t+\cos 2 t)\right|_{0} ^{2 \pi}=0
\end{aligned}
$$

(b) Verify that Theorem 2 holds for the ellipse defined by

$$
C: \mathbf{r}(t)=(1+\cos t) \mathbf{i}+\left(1+\frac{\sin t}{2}\right) \mathbf{j}, \quad 0 \leq t \leq 2 \pi
$$

$$
M=2 x+y=3+2 \cos t+\frac{\sin t}{2}
$$

$$
\begin{aligned}
& N=x=1+\cos t \\
& d x=-\sin t d t \\
& d y=\frac{\cos t}{2} d t
\end{aligned}
$$

Once again a direct calculation of the circulation integral yields

$$
\begin{aligned}
\oint_{C} M d x+N d y & =\int_{0}^{2 \pi}\left(\left(3+2 \cos t+\frac{\sin t}{2}\right)(-\sin t)+(1+\cos t)\left(\frac{\cos t}{2}\right)\right) d t \\
& =\int_{0}^{2 \pi}\left(-3 \sin t-2 \sin t \cos t+\frac{\cos ^{2} t-\sin ^{2} t}{2}+\frac{\cos t}{2}\right) d t \\
& =\int_{0}^{2 \pi}\left(-3 \sin t-\sin 2 t+\frac{\cos 2 t}{2}+\frac{\cos t}{2}\right) d t \\
& =\vdots \\
& =0
\end{aligned}
$$

as expected.
Remark. Of course, neither of the calculations above were necessary because, even if we hadn't noticed that the given field was
conservative, we can simply check the k-component of curl of \mathbf{F}. That is

$$
\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=\frac{\partial(x)}{\partial x}-\frac{\partial(2 x+y)}{\partial y}=1-1=0
$$

Example 7. Evaluate the circulation integral $\oint_{C}(3 y d x+2 x d y)$ where C is boundary of the region R defined by

$$
0 \leq x \leq \pi, 0 \leq y \leq \sin x
$$

Now let $\mathbf{F}=3 y \mathbf{i}+2 x \mathbf{j}$ (see Figure 2). We claim that $(3 y) \mathbf{i}+(2 x) \mathbf{j}$ is not exact.

Figure 2: The field $\mathbf{F}=3 y \mathbf{i}+2 x \mathbf{j}$

Let $C=C_{1} \cup C_{2}$ where

$$
\begin{aligned}
& C_{1}: \mathbf{r}_{1}(t)=(\pi-t) \mathbf{i}+\sin (\pi-t) \mathbf{j}, \quad 0 \leq t \leq \pi \\
& C_{2}: \mathbf{r}_{2}(t)=t \mathbf{i}, \quad 0 \leq t \leq \pi
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{F}\left(\mathbf{r}_{1}(t)\right)=3 \sin (\pi-t) \mathbf{i}+2(\pi-t) \mathbf{j} \\
& \mathbf{F}\left(\mathbf{r}_{2}(t)\right)=2 t \mathbf{j}
\end{aligned}
$$

Then

$$
\oint_{C}(3 y d x+2 x d y)=\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}_{1}+\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}_{2}
$$

Now

$$
\begin{aligned}
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}_{1} & =\int_{0}^{\pi}\langle 3 \sin (\pi-t), 2(\pi-t)\rangle \cdot\langle-1,-\cos (\pi-t)\rangle d t \\
& =\int_{0}^{\pi}-3 \sin (\pi-t)-2(\pi-t) \cos (\pi-t) d t \\
& \vdots \\
& =-2
\end{aligned}
$$

and

$$
\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}_{2}=0
$$

so that

$$
\oint_{C}(3 y d x+2 x d y)=-2 \neq 0
$$

In other words, the $3 y d x+2 x d y$ is not exact.

