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16.3 Path Independence and Conservative Fields

Definition. Path Independence

Let F be a field defined on an open region D in space, and suppose

that the (work) integral
´ B

A F · dr is the same for all paths from A to B

(in D). Then the integral
´

F · dr is path independent in D and the

field F is conservative on D.

It turns out that a field F is conservative if and only if F = ∇f , that is, if

and only if F is a gradient vector field for some differentiable function f .

Definition. Potential Functions

If F is a field defined on D and F = ∇f for some scalar function f on

D, then f is called a potential function for F.



16.3 2

Some important assumptions:

1. All curves are piecewise smooth.

2. If F = M i +N j + P k then M, N, P have continuous first partials.

3. D is an open, connected region in space.

Theorem 1. The Fundamental Theorem of Line Integrals

1. Let F = M i +N j + P k be a vector field with continuous

components throughout an open connected region D in space.

Then there exists a differentiable function f such that

F = ∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

if and only if for all points A and B in D the integral
´ B

A F · dr is path

independent in D.

2. In this case

(1)

ˆ B

A

F · dr =
ˆ B

A

∇f · dr = f (B)− f (A)
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Example 1. Let F be the force field

F = y sin z i + x sin z j + (xy cos z + sin z)k

and let A = (1, 1, π/6) andB = (2, 3, π/2). Find the work done along the

straight line connecting A to B.

Notice that f (x, y, z) = xy sin z − cos z is a potential function for F since

∇f = y sin z i + x sin z j + (xy cos z + sin z)k

In other words, the field F is conservative. So by equation (1)
ˆ B

A

F · dr =
ˆ B

A

∇f · dr

= f (B)− f (A)

= f (2, 3, π/2)− f (1, 1, π/6)

= 6−
(

1/2−
√
3/2
)

= 11/2 +
√
3/2

Remark. We will see how to find f below.
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Notice that if F is conservative then the line integral around any closed

curve is
ˆ A

A

F · dr =
ˆ A

A

∇f · dr = f (A)− f (A) = 0

Theorem 2.

The following statements are equivalent:

1.
´

F · dr = 0 around every closed curve in D.

2. The field F is conservative on D.
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Definition. Del Notation and Curl

We define a new object...the “del” operator:

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

(This is just a convenient notation to help remember some formulas

below.)

We also define the curl of the vector field F by

curlF = ∇× F

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

i j k

∂

∂x

∂

∂y

∂

∂z

M N P

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

(
∂P

∂y
− ∂N

∂z

)

i

+

(
∂M

∂z
− ∂P

∂x

)

j +

(
∂N

∂x
− ∂M

∂y

)

k

Remark. We will discuss curl in more detail in the next section.
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Example 2.

Find the curl of the vector field

F = y sin z i + x sin z j + (xy cos z + sin z) k

curlF = ∇× F

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

i j k

∂

∂x

∂

∂y

∂

∂z

y sin z x sin z (xy cos z + sin z)

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

(
∂ (xy cos z + sin z)

∂y
− ∂ (x sin z)

∂z

)

i

+

(
∂ (y sin z)

∂z
− ∂ (xy cos z + sin z)

∂x

)

j

+

(
∂ (x sin z)

∂x
− ∂ (y sin z)

∂y

)

k

= (x cos z − x cos z) i + (y cos z − y cos z) j

+ (sin z − sin z)k

= 0
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The result from the last example was no coincidence. It turns out that a

field is conservative if the curl is zero.

More precisely, suppose that

F = M (x, y, z) i +N (x, y, z) j + P (x, y, z) k

is a field whose component functions have continuous first partials and

D is a simply connected region in space. Then F is conservative on D

if and only if

curlF = ∇× F = 0.
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Example 3.

Show that F = y2z3 i + 2xyz3 j + 3xy2z2 k is conservative.

∇× F =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

i j k

∂

∂x

∂

∂y

∂

∂z

y2z3 2xyz3 3xy2z2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= i

(

∂
(
3xy2z2

)

∂y
− ∂

(
2xyz3

)

∂z

)

− j

(

∂
(
3xy2z2

)

∂x
− ∂

(
y2z3

)

∂z

)

+ k

(

∂
(
2xyz3

)

∂x
− ∂

(
y2z3

)

∂y

)

= i
(
6xyz2 − 6xyz2

)
− j

(
3y2z2 − 3y2z2

)
+ k

(
2yz3 − 2yz3

)

= 0
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Finding Potential Functions

Suppose that F = M i +N j + P k is conservative. How do we find a

function f such that ∇f = F? To find the function f , observe that it

must satisfy the following partial differential equations (PDEs).

(2)
∂f

∂x
= M,

∂f

∂y
= N,

∂f

∂z
= P

We illustrate below.

Example 4.

Find the potential function f from Example 1.

Recall that

F = y sin z i + x sin z j + (xy cos z + sin z)k.

So by (2) we must solve the following partial differential equations,

simultaneously.

∂f

∂x
= y sin z(3)

∂f

∂y
= x sin z(4)

∂f

∂z
= xy cos z + sin z(5)
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Antidifferentiating (3) with respect to x yields

f (x, y, z) = xy sin z + C1

where C1 does not depend on x. Thus

f (x, y, z) = xy sin z + g(y, z)

for some differentiable function g. We now have a “candidate” function

to work. Specifically, f must satisfy the remaining partial differential

equations, (4) and (5).

Now (4) implies

x sin z =
∂(xy sin z + g(y, z))

∂y
= x sin z +

∂g

∂y

It follows that g does not depend on y. In other words,

f (x, y, z) = xy sin z + h(z)

for some differentiable function h. Finally, (5) implies

xy cos z + sin z =
∂(xy sin z + h(z))

∂z
= xy cos z + h′(z)

It follows that h(z) = − cos z + C and hence

f (x, y, z) = xy sin z − cos z + C,

Here C is an arbitrary constant. (Note: As usual, we chose to let C = 0

in Example 1).
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Exact Differential Forms

Definition. The expression

(6) M dx +N dy + P dz

is called a differential form. It is called exact on a region D if there is

a real-valued function f defined on D such that

(7)
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz

︸ ︷︷ ︸

df

= M dx +N dy + P dz

Now if the differential form (6) is exact on a region D in space and f is

a scalar function defined on D satisfying (7), and A, B ∈ D then
ˆ B

A

M dx +N dy + P dz =

ˆ B

A

df

= f (B)− f (A)

as a direct consequence of the Fundamental Theorem of Line Integrals

(Theorem 1).

Notice that equation (7) is equivalent to the statement that the field

F = M i +N j + P k is conservative. In other words, the differential

form (6) is exact if and only if there a real-valued function f defined on

D such that

(8)
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

︸ ︷︷ ︸

∇f

= M i +N j + P k
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Example 5.

Show that y2z3 dx + 2xyz3 dy + 3xy2z2 dz is exact and compute the

integral
ˆ (1,1/2,−3)

(0,0,0)

y2z3 dx + 2xyz3 dy + 3xy2z2 dz

Let f (x, y, z) = xy2z3. Then

df = y2z3 dx + 2xyz3 dy + 3xy2z2 dz

It follows that the given form is exact. Thus

ˆ (1,1/2,−3)

(0,0,0)

y2z3 dx + 2xyz3 dy + 3xy2z2 dz

=

ˆ (1,1/2,−3)

(0,0,0)

df

= f (x, y, z)
(1,1/2,−3)

(0,0,0)

= f (1, 1/2,−3)− f (0, 0, 0)

= (1)((1/2)2)((−3)3) = −27/4
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What do conservative vector field look like?

We know that gradient vector fields are conservative. Consider the

following example.

Example 6.

Let f (x, y) = x2 + xy. The gradient field, ∇f = (2x + y) i + x j, is shown

in Figure 1. Now suppose that C is any smooth (simple, closed) curve

in R
2. Is it believable that the circulation integral

´

C F · dr = 0?

−2 −1 1 2

−2

−1

1

2

Figure 1: A Conservative Vector Field ∇f
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We look at a few examples below.

(a) So let C be a circle of radius 2 centered at the origin. Verify that

Theorem 2 holds.

C : r(t) = 2 cos t i + 2 sin t j, 0 ≤ t ≤ 2π

−2 −1 1 2

−2

−1

1

2
M = 2x + y = 4 cos t + 2 sin t

N = x = 2 cos t

dx = −2 sin t dt

dy = 2 cos t dt

A direct calculation of the circulation integral yields
˛

C

M dx +N dy =

ˆ 2π

0

((4 cos t + 2 sin t) (−2 sin t) + (2 cos t) (2 cos t)) dt

= 4

ˆ 2π

0

(
cos2 t− 2 sin t cos t− sin2 t

)
dt

= 4

ˆ 2π

0

(cos 2t− sin 2t) dt

= 2 (sin 2t + cos 2t)
2π

0

= 0

as expected.
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(b) Verify that Theorem 2 holds for the ellipse defined by

C : r(t) = (1 + cos t) i +

(

1 +
sin t

2

)

j, 0 ≤ t ≤ 2π

−2 −1 1 2

−2

−1

1

2M = 2x + y = 3 + 2 cos t +
sin t

2

N = x = 1 + cos t

dx = − sin t dt

dy =
cos t

2
dt

Once again a direct calculation of the circulation integral yields
˛

C

M dx+N dy =

ˆ

2π

0

((

3 + 2 cos t+
sin t

2

)

(− sin t) + (1 + cos t)

(
cos t

2

))

dt

=

ˆ

2π

0

(

−3 sin t− 2 sin t cos t+
cos2 t− sin2 t

2
+

cos t

2

)

dt

=

ˆ

2π

0

(

−3 sin t− sin 2t+
cos 2t

2
+

cos t

2

)

dt

=
...

= 0

as expected.

Remark. Of course, neither of the calculations above were necessary

because, even if we hadn’t noticed that the given field was
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conservative, we can simply check the k-component of curl of F. That

is
∂N

∂x
− ∂M

∂y
=

∂(x)

∂x
− ∂(2x + y)

∂y
= 1− 1 = 0

Example 7. Evaluate the circulation integral

ffi

C

(3y dx + 2x dy) where

C is boundary of the region R defined by

0 ≤ x ≤ π, 0 ≤ y ≤ sin x

Now let F = 3y i + 2x j (see Figure 2). We claim that (3y) i + (2x) j is not

exact.

1 2 3

1

Figure 2: The field F = 3y i+ 2x j

Let’s confirm by computing the circulation?
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Let C = C1 ∪ C2 where

C1 : r1(t) = (π − t) i + sin(π − t) j, 0 ≤ t ≤ π

C2 : r2(t) = t i, 0 ≤ t ≤ π

and

F(r1(t)) = 3 sin(π − t) i + 2(π − t) j

F(r2(t)) = 2t j

Then
ffi

C

(3y dx + 2x dy) =

ˆ

C1

F · dr1 +
ˆ

C2

F · dr2

Now
ˆ

C1

F · dr1 =
ˆ π

0

〈3 sin(π − t), 2(π − t)〉 · 〈−1,− cos(π − t)〉 dt

=

ˆ π

0

−3 sin(π − t)− 2(π − t) cos(π − t) dt

...

= −2

and
ˆ

C2

F · dr2 = 0

so that
ffi

C

(3y dx + 2x dy) = −2 6= 0

In other words, the 3y dx + 2x dy is not exact.


