14.7 Optimization and Extreme Values

The Derivative Tests

Definition. Extreme Values

Let $f(x, y)$ be defined on a region R containing the point (a, b). Then

1. $f(a, b)$ is a local minimum value of f if $f(a, b) \leq f(x, y)$ for all points (x, y) in an open disk centered at (a, b).
2. $f(a, b)$ is a local maximum value of f if $f(a, b) \geq f(x, y)$ for all points (x, y) in an open disk centered at (a, b).

Theorem 1. The First Derivative Test for Local Extreme Values

 If $f(x, y)$ has a local extreme (min or max) value at an interior point (a, b) of the domain of f and if the partial derivatives exist there, then $f_{x}(a, b)=f_{y}(a, b)=0$.
Definition. Critical Point

An interior point of the domain of the function $f(x, y)$ is called a critical point of f if either

1. $f_{x}(a, b)=f_{y}(a, b)=0$ or
2. One or both of f_{x} and f_{y} do not not exist at (a, b).

Example 1. Sketch of the graph of $z=f(x, y)=y^{2}-x^{2} y+y$. Find the critical points.

Definition. Saddle Point

A critical point (a, b) of a differentiable function $f(x, y)$ is called a saddle point if in every open disk centered at (a, b) there are domain points (x, y) such that $f(x, y)>f(a, b)$ and other points (x, y) such that $f(x, y)<f(a, b)$.

Theorem 2. The Second Derivative Test for Local Extreme Values

Suppose $f(x, y)$ and its first and second partial derivatives are continuous throughout a disk centered at (a, b) and that $f_{x}(a, b)=f_{y}(a, b)=0$. Then

1. f has a local maximum at (a, b) if $f_{x x}<0$ and $f_{x x} f_{y y}-f_{x y}^{2}>0$ at (a, b).
2. f has a local minimum at (a, b) if $f_{x x}>0$ and $f_{x x} f_{y y}-f_{x y}^{2}>0$ at (a, b).
3. f has a saddle point at (a, b) if $f_{x x} f_{y y}-f_{x y}^{2}<0$ at (a, b).
4. The test is inconclusive at (a, b) if $f_{x x} f_{y y}-f_{x y}^{2}=0$ at (a, b).

Example 2. Sketch of the graph of $z=f(x, y)=\frac{y^{2}-x^{2}}{2}$ demonstrating a saddle point at the origin.

Example 3. Let $z=f(x, y)=x^{2}+x y+y^{2}-6 x$ and let R be defined by $R: 0 \leq x \leq 5,-3 \leq y \leq 3$. Find the maximum and minimum values of f over the region R.

The sketch below indicates the nine domain values that we tested in today's example. The function, $g(x, y)$ attains a global maximum at $(5,3)$ (shown in blue) and a global minimum at $(4,-2)$ (shown in red).

Example 4. Let $z=f(x, y)=x^{3}+y^{3}+3 x^{2}-3 y^{2}-8$. Find the relative maximum and minimum values of f.

Example 5. Let $z=f(x, y)=x^{2}-x^{2} y+2 x y$ and let R be the region defined by R : $-2 \leq x \leq 2, x^{2}-1 \leq y \leq 3$. Find the minimum and maximum values of f over the region R. Notice that, unlike the previous two examples, the sketches aren't much help.

To optimize f, we hope to identify a finite number of domain values to compare. These domain values are shown in the sketch below. Notice that the critical point $(2,2)$ does not lie in R. The procedure to identify these points is outlined below.

Step 1. Find the critical points of f that lie within R.

$$
f_{x}=2 x-2 x y+2 y \quad \text { and } \quad f_{y}=x(2-x)
$$

Setting $f_{y}=0$ implies $x=0,2$. It follows that the critical points are $O=O(0,0)$ and (2,2).

Step 2. Now let $S_{1}=\{(x, 3):-2 \leq x \leq 2\}$ and let

$$
\begin{aligned}
h(x) & =\left.f(x, y)\right|_{S_{1}} \\
& =f(x, 3)=6 x-2 x^{2}, \quad-2 \leq x \leq 2
\end{aligned}
$$

It is easy to see that 1.5 is a critical point of h. Hence we should add $P=P(1.5,3)$ to the list of points that we must check.

Step 3. Now let $S_{2}=\left\{\left(x, x^{2}-1\right):-2 \leq x \leq 2\right\}$ and let

$$
\begin{aligned}
g(x) & =\left.f(x, y)\right|_{S_{2}} \\
& =f\left(x, x^{2}-1\right)=-2 x+2 x^{2}+2 x^{3}-x^{4}, \quad-2 \leq x \leq 2
\end{aligned}
$$

With the help of a computer, we identify 3 critical point of g as $-0.744644,0.355416,1.889229$. It follows that we must also check

$$
\begin{aligned}
& Q_{1}=Q_{1}(-0.744644,-0.44550489) \\
& Q_{2}=Q_{2}(0.355416,-0.8736797) \\
& Q_{3}=Q_{3}(1.889229,2.569184)
\end{aligned}
$$

Step 4. Compare the function values at each of the above points and at the points $T_{1}=T_{1}(-2,3)$ and $T_{2}=T_{2}(2,3)$.

(x, y)	$f(x, y)$
O	$f(O)=0$
P	$f(P)=4.5$
Q_{1}	$f\left(Q_{1}\right) \approx 1.4650107$
Q_{2}	$f\left(Q_{2}\right) \approx-0.384355$
Q_{3}	$f\left(Q_{3}\right) \approx 4.106844$
T_{1}	$f\left(T_{1}\right)=-20$
T_{2}	$f\left(T_{2}\right)=4$

Step 5. Answer the question.

The function attains a minimum at T_{1} and a maximum at P.

