### 14.0 Cylindrical and Spherical Coordinates

## Cylindrical Coordinates

Definition. Cylindrical coordinates represent a point $P$ in space by the ordered triple $(r, \theta, z)$ where
a. $r$ and $\theta$ are the polar coordinates for the vertical projection of $P$ onto the $x y$-plane.
b. $z$ is the rectangular vertical coordinate of $P$.


The following equations relate rectangular coordinates $(x, y, z)$ to
cylindrical coordinates $(r, \theta, z)$.

$$
\begin{array}{r}
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z \\
\text { (Also, } \left.r^{2}=x^{2}+y^{2} \text { and } \tan \theta=y / x\right)
\end{array}
$$

Remark. One must exercise care when using the second set of equations.

## Example 1. Constant-Coordinate Equations

Describe the objects generated by the constant equations:

$$
\begin{aligned}
& r=r_{0} \\
& \theta=\theta_{0} \\
& z=z_{0}
\end{aligned}
$$

## Example 2.

a. Convert the rectangular coordinates $(1,-2,3)$ to cylindrical coordinates.
b. Convert the cylindrical coordinates $(3,2 \pi / 3,-1)$ to rectangular coordinates.

Example 3. Describe the surface whose equation is given below. Convert the equation to rectangular or cylindrical coordinates, as appropriate.
a. Cylindrical Equation: $\quad r=3$
b. Cylindrical Equation: $\quad z=2 r$
c. Rectangular Equation: $\quad z=x^{2}-y^{2}$

## Spherical Coordinates

Definition. Spherical coordinates represent a point $P$ in space by the ordered triple $(\rho, \phi, \theta)$ where
a. $\rho$ is the distance from $P$ to the origin. So by definition $\rho \geq 0$.
b. $\phi$ is the angle that $\overrightarrow{O P}$ makes with the positive $z$-axis $(0 \leq \phi \leq \pi)$.
c. $\theta$ is the angle as defined in the cylindrical coordinate system earlier today.



The following equations relate spherical coordinates to rectangular and cylindrical coordinates.

$$
\begin{aligned}
& r=\rho \sin \phi, \quad x=r \cos \theta=\rho \sin \phi \cos \theta \\
& z=\rho \cos \phi, \quad y=r \sin \theta=\rho \sin \phi \sin \theta \\
& \rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{r^{2}+z^{2}}
\end{aligned}
$$

## Example 4. Constant-Coordinates Equations

Describe the objects generated by the constant equations:

$$
\begin{aligned}
\rho & =\rho_{0} \\
\phi & =\phi_{0} \\
\theta & =\theta_{0}
\end{aligned}
$$

Example 5. Convert the rectangular coordinates $(0,1, \sqrt{3})$ to spherical coordinates.

Example 6. Write the equations below in spherical or rectangular coordinates, as appropriate.
a. $z^{2}=x^{2}+y^{2}$
b. $\rho=1+\cos \phi$

## Example 7.

Consider the spherical equation $\phi=\frac{\pi}{3}$. Find the equivalent cylindrical and rectangular equations.

1. First Attempt:
(a) Cylindrical Coordinate Equation: We've already looked at the cross-sections $z=$ const $(\geq 0)$. Notice that the if $y=0$ we must have the equation $\tan \phi=x / z$. Thus

$$
\begin{aligned}
& \frac{x}{z}=\tan \phi=\sqrt{3} \\
& \Longrightarrow x=\sqrt{3} z \\
& \Longrightarrow x^{2}=3 z^{2} \\
& \Longrightarrow r^{2}=3 z^{2} \text { (Why?) }
\end{aligned}
$$

(b) Rectangular Coordinate Equation: The last equation implies

$$
x^{2}+y^{2}=3 z^{2}
$$

2. Alternate Approach:

$$
\begin{aligned}
\phi=\frac{\pi}{3} & \Longrightarrow \tan \phi=\sqrt{3} \\
& \Longrightarrow \frac{r}{z}=\sqrt{3} \\
& \Longrightarrow r^{2}=3 z^{2} \\
& \Longrightarrow \ldots
\end{aligned}
$$

## Coordinate Conversion Formulas

Cylindrical to
Rectangular

$$
\begin{array}{ccc}
\text { Rectangular } & \text { Rectangular } & \text { Cylindrical } \\
\hline x=r \cos \theta & x=\rho \sin \phi \cos \theta & r=\rho \sin \phi \\
y=r \sin \theta & y=\rho \sin \phi \sin \theta & z=\rho \cos \phi \\
z=z & z=\rho \cos \phi & \theta=\theta
\end{array}
$$

Spherical to
Cylindrical

