14.0 Cylindrical and Spherical Coordinates

Cylindrical Coordinates

Definition. Cylindrical coordinates represent a point *P* in space by the ordered triple (r, θ, z) where

- a. r and θ are the polar coordinates for the vertical projection of P onto the xy-plane.
- b. z is the rectangular vertical coordinate of P.

The following equations relate rectangular coordinates (x, y, z) to

cylindrical coordinates (r, θ, z) .

$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$
(Also, $r^2 = x^2 + y^2$ and $\tan \theta = y/x$)

Remark. One must exercise care when using the second set of equations.

Example 1. Constant-Coordinate Equations

Describe the objects generated by the constant equations:

$$r = r_0$$
$$\theta = \theta_0$$
$$z = z_0$$

Example 2.

- a. Convert the rectangular coordinates (1, -2, 3) to cylindrical coordinates.
- b. Convert the cylindrical coordinates $(3, 2\pi/3, -1)$ to rectangular coordinates.

Example 3. Describe the surface whose equation is given below. Convert the equation to rectangular or cylindrical coordinates, as appropriate.

a. Cylindrical Equation: r = 3

b. Cylindrical Equation:
$$z = 2r$$

c. Rectangular Equation: $z = x^2 - y^2$

Spherical Coordinates

Definition. Spherical coordinates represent a point *P* in space by the ordered triple (ρ, ϕ, θ) where

- a. ρ is the **distance** from *P* to the origin. So by definition $\rho \ge 0$.
- b. ϕ is the angle that \overrightarrow{OP} makes with the positive *z*-axis $(0 \le \phi \le \pi)$.
- c. θ is the angle as defined in the *cylindrical coordinate* system earlier today.

The following equations relate spherical coordinates to rectangular and cylindrical coordinates.

$$r = \rho \sin \phi, \quad x = r \cos \theta = \rho \sin \phi \cos \theta,$$
$$z = \rho \cos \phi, \quad y = r \sin \theta = \rho \sin \phi \sin \theta,$$
$$\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{r^2 + z^2}$$

Example 4. Constant-Coordinates Equations

Describe the objects generated by the constant equations:

$$\rho = \rho_0$$
$$\phi = \phi_0$$
$$\theta = \theta_0$$

Example 5. Convert the rectangular coordinates $(0, 1, \sqrt{3})$ to spherical coordinates.

Example 6. Write the equations below in spherical or rectangular coordinates, as appropriate.

a. $z^2 = x^2 + y^2$

b. $\rho = 1 + \cos \phi$

Example 7.

Consider the spherical equation $\phi = \frac{\pi}{3}$. Find the equivalent cylindrical and rectangular equations.

1. First Attempt:

(a) Cylindrical Coordinate Equation: We've already looked at the cross-sections $z = \text{const} (\geq 0)$. Notice that the if y = 0 we must have the equation $\tan \phi = x/z$. Thus

$$\frac{x}{z} = \tan \phi = \sqrt{3}$$
$$\implies x = \sqrt{3} z$$
$$\implies x^2 = 3z^2$$
$$\implies r^2 = 3z^2 \text{ (Why?)}$$

(b) Rectangular Coordinate Equation: The last equation implies

$$x^2 + y^2 = 3z^2$$

2. Alternate Approach:

$$\phi = \frac{\pi}{3} \Longrightarrow \tan \phi = \sqrt{3}$$
$$\implies \frac{r}{z} = \sqrt{3}$$
$$\implies r^2 = 3z^2$$
$$\implies \dots$$

Coordinate Conversion Formulas

	Cylindrical to Rectangular	Spherical to Rectangular	Spherical to Cylindrical
_	$x = r \cos \theta$	$x = \rho \sin \phi \cos \theta$	$r = \rho \sin \phi$
	$y = r \sin \theta$	$y = \rho \sin \phi \sin \theta$	$z = \rho \cos \phi$
	z = z	$z = \rho \cos \phi$	heta= heta