13.3 Arc Length

Last time we saw that the vector function $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$ was differentiable at t if each of the components, $x(t), y(t)$, and $z(t)$ were. Also, r was said to be differentiable if it was differentiable at each point in its domain. The curve traced by r is called smooth if $\frac{d \mathbf{r}}{d t}$ is continuous and never 0 , i.e., if each of the component functions have continuous first derivatives that are not simultaneously 0.

Suppose that $C: \mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, t \in[a, b]$ is smooth curve and that $P=P\left(t_{0}\right)$ is some base point on C. Then what is the distance, along the curve, $s(t)$ at any time $t>t_{0}$?

Whatever it is it must satisfy the differential equation

$$
\begin{align*}
\frac{d s}{d t} & =|\mathbf{v}(t)| \tag{1}\\
& =\left|\mathbf{r}^{\prime}(t)\right| \tag{2}
\end{align*}
$$

with the initial condition $s\left(t_{0}\right)=0$.

That is, the arc-length parameter $s(t)$ is given by

$$
\begin{align*}
s(t) & =\int_{t_{0}}^{t}|\mathbf{v}(\tau)| d \tau \tag{3}\\
& =\int_{t_{0}}^{t} \sqrt{\left(\frac{d x}{d \tau}\right)^{2}+\left(\frac{d y}{d \tau}\right)^{2}+\left(\frac{d z}{d \tau}\right)^{2}} d \tau
\end{align*}
$$

Notice that $s\left(t_{0}\right)=0$ and $s(t)>0$ whenever $t>t_{0}$.

This leads directly for the formula for the length of such a (smooth) curve.

Suppose that $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, t \in[a, b]$ is a smooth curve traced exactly once as t increase from a to b. Then its length is given by
(5)

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

Example 1. Arc Length

Consider the curve below.

$$
\mathbf{r}(t)=\left(e^{t} \cos t\right) \mathbf{i}+\left(e^{t} \sin t\right) \mathbf{j}+e^{t} \mathbf{k}
$$

a. Find the arc length parameter along the curve from the point where $t=0$ by evaluating the integral

$$
s=\int_{0}^{t}|\mathbf{v}(\tau)| d \tau
$$

Now

$$
\begin{aligned}
\mathbf{v}(t) & =e^{t}(\cos t-\sin t) \mathbf{i}+e^{t}(\cos t+\sin t) \mathbf{j}+e^{t} \mathbf{k} \Longrightarrow \\
|\mathbf{v}(t)|^{2} & =\left(e^{t}(\cos t-\sin t)\right)^{2}+\left(e^{t}(\cos t+\sin t)\right)^{2}+e^{2 t} \\
& =3 e^{2 t}
\end{aligned}
$$

Thus

$$
\begin{aligned}
s(t) & =\sqrt{3} \int_{0}^{t} e^{\tau} d \tau \\
& =\sqrt{3}\left(e^{t}-1\right)
\end{aligned}
$$

b. Find the arc length of the curve over the interval $0 \leq t \leq \ln 4$. From part (a) we see that the arc length is $s(\ln 4)=\sqrt{3}(4-1)$.

As we saw in (1),

$$
\frac{d s}{d t}>0
$$

In other words, s is a one-to-one invertible function of t. It follows that t is also a differentiable function of s and

$$
\frac{d t}{d s}=\frac{1}{d s / d t}=\frac{1}{|\mathbf{v}|}
$$

Now by the chain rule we have

$$
\begin{equation*}
\frac{d \mathbf{r}}{d s}=\frac{d \mathbf{r}}{d t} \frac{d t}{d s}=\mathbf{v} \frac{1}{|\mathbf{v}|}=\frac{\mathbf{v}}{|\mathbf{v}|} \tag{6}
\end{equation*}
$$

That is, \mathbf{r} is a differentiable function of the arc-length parameter s. In fact, $\frac{d \mathbf{r}}{d s}$ is a unit vector in the direction of the velocity vector \mathbf{v}. We denote this vector by \mathbf{T}. It is called the unit tangent vector.

Definition

The unit tangent vector of a smooth curve $\mathbf{r}(t)$ is
(7)

$$
\mathbf{T}=\frac{d \mathbf{r}}{d s}=\frac{\mathbf{v}}{|\mathbf{v}|}
$$

Example 2. The Unit Tangent Vector

The position function of a particle traveling in space is given below. Answer the questions that follow.

$$
\mathbf{r}(t)=e^{-t} \mathbf{i}+2 \cos 3 t \mathbf{j}+3 \sin 2 t \mathbf{k}
$$

a. Find $d \mathbf{r} / d t$.

$$
\frac{d \mathbf{r}}{d t}=\left(-e^{-t}\right) \mathbf{i}+(-6 \sin 3 t) \mathbf{j}+(6 \cos 2 t) \mathbf{k}
$$

b. Find the particle's speed and direction of motion at time $t=0$.

$$
\begin{aligned}
\left.\frac{d \mathbf{r}}{d t}\right|_{t=0} & =-\mathbf{i}+0 \mathbf{j}+6 \mathbf{k} \\
\Longrightarrow \mathbf{v}(0) & =\underbrace{\sqrt{37}}_{\text {speed }} \times \underbrace{\left(\frac{-1}{\sqrt{37}} \mathbf{i}+\frac{6}{\sqrt{37}} \mathbf{k}\right)}_{\text {direction }}
\end{aligned}
$$

c. Find the unit tangent vector of the curve at $t=0$.

$$
\begin{aligned}
\mathbf{T} & =\frac{\mathbf{v}}{|\mathbf{v}|} \\
& =\frac{-1}{\sqrt{37}} \mathbf{i}+\frac{6}{\sqrt{37}} \mathbf{k}
\end{aligned}
$$

d. Find the unit tangent vector of the curve.

From part (a) we have,

$$
|\mathbf{v}|^{2}=\left(-e^{-t}\right)^{2}+(-6 \sin 3 t)^{2}+(6 \cos 2 t)^{2}
$$

so that

$$
\begin{aligned}
\mathbf{T} & =\frac{\mathbf{v}}{|\mathbf{v}|} \\
& =\frac{\left(-e^{-t}\right) \mathbf{i}+(-6 \sin 3 t) \mathbf{j}+(6 \cos 2 t) \mathbf{k}}{\sqrt{\left(-e^{-t}\right)^{2}+(-6 \sin 3 t)^{2}+(6 \cos 2 t)^{2}}}
\end{aligned}
$$

