13.2 Derivatives and Integrals of Vector Functions

Derivatives and Motion

Suppose that $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$ is the position of a particle moving along a space curve (see sketch). Also, suppose that f, g, and h are differentiable functions of t. Now the change in the position vector from time t to time $t+\Delta t$ is

$$
\begin{equation*}
\Delta \mathbf{r}=\mathbf{r}(t+\Delta t)-\mathbf{r}(t) \tag{1}
\end{equation*}
$$

Now if we rewrite (1) component-wise we get

$$
\Delta \mathbf{r}=[f(t+\Delta t)-f(t)] \mathbf{i}+[g(t+\Delta t)-g(t)] \mathbf{j}+[h(t+\Delta t)-h(t)] \mathbf{k}
$$

It follows that

$$
\begin{aligned}
& \lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}=\left[\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}\right] \mathbf{i} \\
&+\left[\lim _{\Delta t \rightarrow 0} \frac{g(t+\Delta t)-g(t)}{\Delta t}\right] \mathbf{j}+\left[\lim _{\Delta t \rightarrow 0} \frac{h(t+\Delta t)-h(t)}{\Delta t}\right] \mathbf{k} \\
&=\left(\frac{d f}{d t}\right) \mathbf{i}+\left(\frac{d g}{d t}\right) \mathbf{j}+\left(\frac{d h}{d t}\right) \mathbf{k} \\
&=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k}
\end{aligned}
$$

This leads to the following

Definition. The Derivative of a Vector-Valued Function

The vector-valued function $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$ is differentiable at t provided each of the component functions is differentiable at t. In this case we have

$$
\begin{equation*}
\mathbf{r}^{\prime}(t)=\frac{d \mathbf{r}}{d t}=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k} \tag{2}
\end{equation*}
$$

We make the usual observations regarding differentiability at a point versus differentiability at every point in the domain of the given function...

The curve traced by a vector-valued function r is called smooth if the derivative $d \mathbf{r} / d t$ is continuous and never 0 . In other words, the component functions have continuous first derivatives that are never simultaneously 0 .

Definition. Velocity, Direction, Speed, Acceleration

If r is the position vector of a particle moving along a smooth curve in space, then we have the following definitions.

1. Velocity is given by: $\mathbf{v}=\frac{d \mathbf{r}}{d t}=\mathbf{r}^{\prime}(t)$
2. The particle's speed is given by: Speed $=|\mathbf{v}|$
3. The acceleration is given by: $\quad \mathbf{a}=\frac{d \mathbf{v}}{d t}=\frac{d^{2} \mathbf{r}}{d t}=\mathbf{v}^{\prime}(t)$
4. The unit tangent vector is the direction of motion at time t. That is,

$$
\mathbf{T}(t)=\frac{\mathbf{v}(t)}{|\mathbf{v}(t)|}=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

Proposition 1. Derivative Rules for Vector-Valued Functions

Let \mathbf{u} and \mathbf{v} be differentiable vector-valued functions of t, \mathbf{C} be a constant vector, c a scalar, and f any differentiable scalar valued function. Then

1. $\frac{d}{d t} \mathbf{C}=0$
2. $\frac{d}{d t}[c \mathbf{u}(t)]=c \mathbf{u}^{\prime}(t)$
3. $\frac{d}{d t}[f(t) \mathbf{u}(t)]=f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t)$
4. $\frac{d}{d t}[\mathbf{u}(t) \pm \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \pm \mathbf{v}^{\prime}(t)$
5. $\frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t)$
6. $\frac{d}{d t}[\mathbf{u}(t) \times \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)$
7. $\frac{d}{d t}[\mathbf{u}(f(t))]=\mathbf{u}^{\prime}(f(t)) f^{\prime}(t)$
