Distance from a Point to a Plane

Example 1. Let T be the plane passing through the points A, B, and C as shown in the figure above and answer the questions below.
a. Find the equation of T.

Let $\mathbf{u}=\overrightarrow{A B}=\langle-3,5,0\rangle$ and $\mathbf{v}=\overrightarrow{A C}=\langle-3,0,8\rangle$. In class we showed that $\mathbf{v} \times \mathbf{u}=\langle 40,24,15\rangle$. It follows that the equation for T is given by

$$
40(x-3)+24 y+15 z=0
$$

or, using the equivalent intercept form

$$
\frac{x}{3}+\frac{y}{5}+\frac{z}{8}=1
$$

b. Find the area of the triangle $\triangle A B C$.

This one is easy.

$$
\text { Area }=\frac{|\mathbf{v} \times \mathbf{u}|}{2}=\frac{\sqrt{40^{2}+24^{2}+15^{2}}}{2}=\frac{49}{2}
$$

c. Find the distance from T to the origin $O(0,0,0)$.

Let d be the distance from O to $T, \mathbf{n}=\mathbf{v} \times \mathbf{u}$, and $\mathbf{w}=\overrightarrow{O A}$. Then $\mathbf{w}=3 \mathbf{i}$ and

$$
d=\left|\operatorname{proj}_{\mathbf{n}} \mathbf{w}\right|=\frac{3 \mathbf{i} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \sqrt{\mathbf{n} \cdot \mathbf{n}}=\frac{120}{49}
$$

Note: Other choices for \mathbf{w} work as well. For example, we could have chosen $\mathbf{w}=\overrightarrow{O B}=5 \mathbf{j}$.

