Example. Let $z=f(x, y)=3 x y-6 x-3 y+7$ and let $R$ be the triangular region bounded with vertices $(0,0),(3,0)$, and $(0,5)$ (see Figure 1). Find the maximum and minimum values of $f$ over the region $R$.

We must find all critical points in the interior of $R$ and then check the boundary of $R$.

1. Find the critical points.

$$
f_{x}=3 y-6, \quad f_{y}=3 x-3
$$

Setting the partials equal to zero and solving the resulting (linear) system of equations, we see that $P=P(1,2)$ is the only critical point and $P \in R$.
2. Check the boundary. We will obviously need to check the three vertices of $R$. To see if there are other boundary points that should be included, we work with the function of one variable

$$
f_{j}=\left.f\right|_{S_{j}}, \quad j=1,2,3
$$

where $S_{1}, S_{2}, S_{3}$ are the three sides of the triangular region $R$ (see Figure 1).
(a) $S_{1}: y=0$. Then $f_{1}(x)=f(x, 0)=7-3 x, x \in S_{1}$ has no critical points
(b) $S_{2}: y=5-5 x / 3$. Now $f_{2}(x)=f(x, 5-5 x / 3)=-5 x^{2}+14 x-8, x \in S_{2}$ has a critical point at $x=7 / 5$.
(c) $S_{3}: x=0$. Notice that

$$
f_{3}(y)=f(0, y)=7-3 y, y \in S_{3}
$$

has no critical points.
Putting these facts together we must compare the following values:

| $(x, y)$ | $f(x, y)$ |
| :---: | :---: |
| $(0,0)$ | $f(0,0)=7$ |
| $(0,5)$ | $f(0,5)=-8$ |
| $(3,0)$ | $f(3,0)=-11$ |
| $(1,2)$ | $f(1,2)=1$ |
| $(7 / 5,8 / 3)$ | $f(7 / 5,8 / 3)=9 / 5$ |

So the absolute minimum is $f_{\min }=f(3,0)=-11$ and the absolute maximum is $f_{\max }=f(0,0)=7$.

The sketch below identifies the five domain values that we tested in this example. The function, $f(x, y)$ attains a global maximum at $(0,0)$ (shown in blue) and a global minimum at $(3,0)$ (shown in red).


Figure 1: Domain of $f$

