1. (2 points) Suppose that f is continuous function of x and that $f(2)=3$. Which of the statements below must be true about the function

$$
g(x)=\int_{0}^{x} f(t) d t
$$

(a) g is a continuous function of x.

Solution:

Since f is continuous, g is differentiable (by the FTC). But the differentiability of g implies the continuity of g. Hence the statement is true.
(b) $g^{\prime}(2)=3$.

Solution:

Since f is continuous the statement is true by the Fundamental Theorem of Calculus.
2. (4 points) Estimate the integral below by subdividing the appropriate interval into 4 equal subintervals and evaluating the corresponding Riemann sum using right end points. A SKETCH IS INCLUDED FOR YOUR CONVENIENCE.

$$
\int_{1}^{3} x^{3} d x
$$

Solution:

(a) So $\Delta x=\frac{3-1}{4}$ and our partition is given by $P=\{1,1.5,2,2.5,3\}$.

(b) We compute the area of each rectangle by multiplying the base, $\Delta x=0.5$ by the height, $f\left(x_{j}\right)$ (since we're using right end points). Thus

$$
\begin{aligned}
& A_{1}=f\left(x_{1}\right) \cdot \Delta x=\left(x_{1}\right)^{3} \cdot 0.5=(1.5)^{3} \cdot 0.5 \\
& A_{2}=f\left(x_{2}\right) \cdot \Delta x=\ldots
\end{aligned}
$$

Notice that if we had been asked to compute the sums using left end points, we would have obtained the formula

$$
A_{j}=f\left(x_{j-1}\right) \cdot \Delta x
$$

for the area of a typical rectangle.
(c) It follows that the Riemann sum is given by

$$
\begin{aligned}
\sum_{j=1}^{4} A_{j} & =\sum_{j=1}^{4} f\left(x_{j}\right) \cdot \Delta x=\Delta x \cdot \sum_{j=1}^{4}\left(x_{j}\right)^{3} \\
& =\frac{1}{2}\left(\left(\frac{3}{2}\right)^{3}+(2)^{3}+\left(\frac{5}{2}\right)^{3}+(3)^{3}\right)=\frac{1}{2} \cdot 54
\end{aligned}
$$

3. Use the (limit) definition of the integral to evaluate $\int_{1}^{3} x^{3} d x$.

Solution:

(a) So $\Delta x=\frac{3-1}{n}=2 / n$ and our partition is now given by

$$
P=\left\{1,1+\frac{2}{n}, 1+\frac{2(2)}{n}, \ldots, 1+\frac{2(k)}{n}, \ldots, 1+\frac{2(n)}{n}=3\right\}
$$

(b) We compute the area of each rectangle by multiplying the base, $\Delta x=2 / n$ by the height, $f\left(x_{j}\right)$ (since we're using right end points). So the area of a typical rectangle is given by

$$
\begin{aligned}
A_{k} & =f\left(x_{k}\right) \cdot \Delta x=\left(x_{k}\right)^{3} \cdot \frac{2}{n}=\left(1+\frac{2(k)}{n}\right)^{3} \cdot \frac{2}{n} \\
& =\frac{2}{n}\left(1+\frac{6 k}{n}+\frac{12 k^{2}}{n^{2}}+\frac{8 k^{3}}{n^{3}}\right)
\end{aligned}
$$

(c) It follows that the Riemann Sum is given by

$$
\begin{aligned}
S_{n}=\sum_{k=1}^{n} A_{k} & =\frac{2}{n} \sum_{k=1}^{n}\left(1+\frac{6 k}{n}+\frac{12 k^{2}}{n^{2}}+\frac{8 k^{3}}{n^{3}}\right) \\
& =\frac{2}{n} \sum_{k=1}^{n} 1+\frac{2}{n} \sum_{k=1}^{n} \frac{6 k}{n}+\frac{2}{n} \sum_{k=1}^{n} \frac{12 k^{2}}{n^{2}}+\frac{2}{n} \sum_{k=1}^{n} \frac{8 k^{3}}{n^{3}} \\
& =\frac{2}{n} \cdot n+\frac{12}{n^{2}} \frac{n(n+1)}{2}+\frac{24}{n^{3}} \frac{n(n+1)(2 n+1)}{6}+\frac{16}{n^{4}}\left(\frac{n(n+1)}{2}\right)^{2} \\
& =2+6\left(1+\frac{1}{n}\right)+4\left(\frac{2 n^{2}+3 n+1}{n^{2}}\right)+4\left(1+\frac{1}{n}\right)^{2}
\end{aligned}
$$

(d) Now to compute the definite integral, we evaluate the following limit

$$
\begin{aligned}
\lim _{n \rightarrow \infty} S_{n} & =\lim _{n \rightarrow \infty} 2+6\left(1+\frac{1}{n}\right)+4\left(\frac{2 n^{2}+3 n+1}{n^{2}}\right)+4\left(1+\frac{1}{n}\right)^{2} \\
& =2+6(1+0)+4(2+0+0)+4(1+0)^{2} \\
& =2+6+4 \cdot 2+4=20
\end{aligned}
$$

In other words,

$$
\int_{1}^{3} x^{3} d x=20
$$

as we saw in class (using the Fundamental Theorem of Calculus).
4. (4 points) The graph of $y=f(x)$ is shown below. Answer the following questions. Note: The areas of the shaded regions are $A_{1}=3.25, A_{2}=0.5$ and $A_{3}=3$.
(a) Find the total area of the shaded regions.

Solution:

$$
A_{1}+A_{2}+A_{3}=6.75
$$

(b) Evaluate $\int_{1}^{4} f(x) d x$

Solution:

$$
\int_{1}^{4} f(x) d x=\int_{1}^{2} f(x) d x+\int_{2}^{4} f(x) d x=0.5-3
$$

(c) Evaluate $\int_{0}^{2} 3 f(x) d x-\int_{2}^{4} f(x) d x$

Solution:

$$
\begin{aligned}
& =3 \int_{0}^{2} f(x) d x-(-3) \\
& =3(-3.25+0.5)+3=-5.25
\end{aligned}
$$

(d) Evaluate $\int_{0}^{4}|f(x)| d x$

Solution:

Should be the same as part (a).

$$
\begin{aligned}
& =\int_{0}^{1}(-f(x)) d x+\int_{1}^{2} f(x) d x+\int_{2}^{4}(-f(x)) d x \\
& =-\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x-\int_{2}^{4} f(x) d x=-(-3.25)+0.5-(-3)=6.75
\end{aligned}
$$

