1. (4 points) Solve the following initial value problem.

$$
\frac{d y}{d x}=\frac{1}{\sqrt{1+2 x}}, \quad y(0)=3
$$

Solution:

Using the integral sign notation as we did in class we see that the differential equation above implies

$$
y=\int \frac{d x}{\sqrt{1+2 x}}
$$

We must find a function whose derivative is $1 / \sqrt{1+2 x}$. Our first guess is to let

$$
y=\sqrt{1+2 x}+C
$$

That turns out to be correct since

$$
\frac{d y}{d x}=D(\sqrt{1+2 x})=\frac{1}{2 \sqrt{1+2 x}} \times 2
$$

So $y(x)=\sqrt{1+2 x}+C$. Now since

$$
3=y(0)=\sqrt{1+2(0)}+C \quad \Longrightarrow \quad C=2
$$

It follows that

$$
y=\sqrt{1+2 x}+2
$$

2. (6 points) In each case, find the most general antiderivative. Check your work!
(a) $\int x \sin x^{2} d x=\frac{-\cos x^{2}}{2}+C$

Check:

$$
D_{x}\left(\frac{-\cos x^{2}}{2}\right)=\frac{-1}{2} D_{x}\left(\cos x^{2}\right)=\frac{-1}{2}\left(-\sin x^{2}\right)(2 x)=x \sin x^{2}
$$

(b) $\int\left(\frac{12}{x^{4}}+\frac{3 x^{2}}{4}\right) d x=$

Solution:

$$
\begin{aligned}
& =\int \frac{12}{x^{4}} d x+\int \frac{3 x^{2}}{4} d x \\
& =12 \int x^{-4} d x+\frac{3}{4} \int x^{2} d x \\
& =12 \frac{x^{-4+1}}{-4+1}+\frac{3}{4} \frac{x^{3}}{3} \\
& =\frac{-4}{x^{3}}+\frac{x^{3}}{4}+C
\end{aligned}
$$

Check:

$$
\begin{aligned}
D_{x}\left(\frac{-4}{x^{3}}+\frac{x^{3}}{4}\right) & =-4 D_{x}\left(x^{-3}\right)+\frac{1}{4} D_{x}\left(x^{3}\right) \\
& =-4\left(-3 x^{-3-1}\right)+\frac{1}{4}\left(3 x^{2}\right) \\
& =\frac{12}{x^{4}}+\frac{3 x^{2}}{4}
\end{aligned}
$$

