1. A rectangular metal box is to contain 36 cubic meters and will have a square base and top. The material for the base costs $\$ 10$ per square meter and the material for sides and top costs $\$ 6$ per square meter. Find the dimensions that minimize cost.

Solution:

(i) Minimize Cost

$$
\begin{aligned}
C & =C_{\text {base }}+C_{\text {Rest }} \\
& =10 x^{2}+6 x^{2}+4 \times 6 x y
\end{aligned}
$$

(ii) Constraints (volume)

Let the box dimensions be x by x by y. Then

$$
\begin{aligned}
x^{2} y & =36 \Longrightarrow \\
y & =36 / x^{2}, \quad x>0
\end{aligned}
$$

(iii) Combine steps (i) and (ii) to obtain a function of a single variable.

$$
C(x)=16 x^{2}+\frac{(24)(36)}{x}
$$

(iv) Find the critical points. Notice that it is much easier to take the derivative of this function as is (as opposed to combing the two rational functions).

$$
C^{\prime}(x)=32 x-\frac{(24)(36)}{x^{2}}
$$

and

$$
C^{\prime}(x)=0 \quad \Longrightarrow \quad x^{3}=\frac{(24)(36)}{32}=27
$$

So the only critical point occurs at 3 .
(v) Since our function is not defined on a closed interval we must find some other way to show that C attains a global minimum at 3 on the interval $(0, \infty)$. Notice that

$$
C^{\prime \prime}(3)=32+\frac{2(24)(36)}{3^{3}}>0
$$

It follows that C has a local and hence global minimum at $x=3$. See Figure 1 .
(Note: We could also construct a monotonicity chart.)
(vi) It follows from part (v) (and part (ii)) that the cost is minimized by the dimensions $3 \times 3 \times 4$.

Figure 1: The Cost Function, $C(x)$.

It is worthwhile to note that $C(x)$ is asymptotic to $16 x^{2}$ as $x \rightarrow \infty$. Using the language of limits, one would say that

$$
\lim _{x \rightarrow \infty} \frac{C(x)}{16 x^{2}}=1
$$

2. Suppose that a homeowner wishes to run power from the utility pole to the house as shown in the sketch below. A contractor charges $\$ 8$ per foot for overhead installation (along the property line) and $\$ 10$ per foot for underground installation (once inside the property). What is the minimum installation cost to supply power to the house? Note: One possible path is shown in blue.

Figure 2: Supplying Residential Power
(a) Identify Quantity to be Optimized

We wish to minimize cost, $C=C_{\text {Underground }}+C_{\text {Overhead }}$. Notice that $C_{\mathrm{U}}=10 z$ and $C_{\mathrm{O}}=8(400-x)$
(b) What are the restrictions?
x and z are related by the equation $x^{2}+90^{2}=z^{2}$ with $0 \leq x \leq 400$. Why?
(c) Combining the items above we must minimize the function

$$
C(x)=8(400-x)+10 \sqrt{90^{2}+x^{2}}, \quad x \in[0,400]
$$

(d) Find the critical points of the function above. Also, see the graph of the cost function above.

$$
\begin{aligned}
C^{\prime}(x) & =\frac{10 x}{\sqrt{x^{2}+90^{2}}}-8 \\
C^{\prime}(x) & =0 \Longrightarrow \\
\frac{5 x}{4} & =\sqrt{x^{2}+90^{2}} \\
\frac{25 x^{2}}{16} & =x^{2}+90^{2} \\
x & =120
\end{aligned}
$$

(e) Compare function values at the critical points and end points.

x	$C(x)$
0	4100
120	3740
300	4100

(f) Answer the question.

By inspecting the table above we see that the minimum cost is $\$ 3740$.

