1. (5 points) Let $f(x)=x^{3}-\frac{15}{2} x^{2}+12 x+1$. Find the absolute maximum value of $f(x)$ on the interval $[2,5]$ and indicate where it occurs.

Solution:

$$
f^{\prime}(x)=3 x^{2}-15 x+12=3(x-1)(x-4)
$$

So the critical points are $x=1,4$. Notice that $1 \notin[2,5]$. Now choose the largest of

$$
\begin{aligned}
& f(2)=3 \\
& f(4)=-7 \\
& f(5)=-3 / 2
\end{aligned}
$$

So the absolute maximum is $f(2)=3$.
2. (5 points) Use linear approximation (or differentials) to estimate $\sqrt{16.4}$.

Solution:

Let $g(x)=\sqrt{x}$ and notice that $g(16)$ is an integer. So we will try to estimate $g(16.4)$ by finding the linearization of $g(x)$ at 16 . Thus

$$
\begin{aligned}
L(x) & =g(16)+g^{\prime}(16)(x-16) \\
& =4+\frac{1}{2 \sqrt{16}}(x-16)
\end{aligned}
$$

It follows that

$$
\sqrt{16.4} \approx L(16.4)=4+\frac{1}{8}(16.4-16)=\frac{81}{20}
$$

It is worth observing that

$$
\left(\frac{81}{20}\right)^{2}=16.4025
$$

So the estimate is pretty good.

