1. (5 points) The position of an object along a line is given by the function $s(t)=2 t^{3}-5 t^{2}+3$, where t is measured in seconds and s in feet.
(a) What is the average velocity over the interval $[1,3]$?

Solution:

$$
s_{\mathrm{avg}}=\frac{s(3)-s(1)}{3-1}=6
$$

(b) What is the (instantaneous) velocity at time t ?

Solution:

$$
v(t)=s^{\prime}(t)=6 t^{2}-10 t
$$

(c) For $t \geq 0$, when is the object moving in the positive direction?

Solution:

We need solve the inequality $s^{\prime}(t)>0$. This is easily seen to be true when $t>5 / 3$.
2. (5 points) An airplane is approaching an airport at a constant altitude of 2 miles. Let θ be the angle of elevation from the airport to the plane. If the speed of the plane is 200 miles per hour, how fast is θ increasing when the airplane is 10 miles away from the airport (see sketch)?

Solution:

Let θ be the angle of elevation from the airport to the plane and let x be the distance from a point A to the airport (see the sketch). Then the quantities
 θ, x, and 2 are related by the equation $\tan \theta=2 / x$ Differentiating both sides with respect to time yields

$$
\sec ^{2} \theta \frac{d \theta}{d t}=\frac{-2}{x^{2}} \frac{d x}{d t}
$$

It follows that

$$
\frac{d \theta}{d t}=\frac{-2 \cos ^{2} \theta}{x^{2}} \frac{d x}{d t}
$$

Notice that $\cos \theta=10 / \sqrt{104}$ when $x=10$. Thus

$$
\left.\frac{d \theta}{d t}\right|_{x=10}=\frac{-2(100)}{10^{2}(104)}(-200)=\frac{50}{13} \text { radians per hour }
$$

Why is $d x / d t<0 ?$

