1. (4 points) Find $f^{\prime}(x)$ if $f(x)=\cos \sqrt{1+x^{2}}$.

Solution:

We employ the Chain Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left(-\sin \sqrt{1+x^{2}}\right) \cdot D_{x}\left(\sqrt{1+x^{2}}\right) \\
& =\left(-\sin \sqrt{1+x^{2}}\right)\left(\frac{1}{2 \sqrt{1+x^{2}}}\right) \cdot D_{x}\left(1+x^{2}\right) \\
& =\left(-\sin \sqrt{1+x^{2}}\right)\left(\frac{1}{2 \sqrt{1+x^{2}}}\right)(2 x)
\end{aligned}
$$

2. (3 points) Suppose that f and g and their derivatives with respect to x have values at $x=2$ and $x=5$ given the table below. Let $h=f \circ g$. Find $h^{\prime}(2)$. In other words, use the following table to find $(f \circ g)^{\prime}(2)$. Note: Not all values are needed.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
2	1	5	-3	-6
5	0	7	4	-8

Solution:

According to the Chain Rule, $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$. It follows that

$$
h^{\prime}(2)=(f \circ g)^{\prime}(2)=f^{\prime}(g(2)) \cdot g^{\prime}(2)=f^{\prime}(5) \cdot g^{\prime}(2)=4 \times(-6)
$$

3. (3 points) Observe that the point $P=(3,1)$ lies on the curve $x^{2}-4 x y+9 y^{2}=6$. Find the slope of the line tangent to the curve at P. In other words, find $\left.\frac{d y}{d x}\right|_{(x, y)=(3,1)}$.

Solution:

Differentiating both sides of the given equation yields

$$
2 x-4\left(y+x \frac{d y}{d x}\right)+18 y \frac{d y}{d x}=0
$$

It follows that

$$
\frac{d y}{d x}=\frac{4 y-2 x}{18 y-4 x}
$$

Hence

$$
\left.\frac{d y}{d x}\right|_{(x, y)=(3,1)}=\frac{4-6}{18-12}=\frac{-1}{3}
$$

