1. (3 points) Evaluate the following limit. Show your work.

$$
\lim _{x \rightarrow 16} \frac{\sqrt{x}-4}{x-16}
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 16} \frac{\sqrt{x}-4}{x-16} & =\lim _{x \rightarrow 16} \frac{\sqrt{x}-4}{(\sqrt{x}+4)(\sqrt{x}-4)} \\
& =\lim _{x \rightarrow 16} \frac{1}{\sqrt{x}+4} \\
& =1 / 8
\end{aligned}
$$

2. (3 points) Prove the following statement using the formal definition of a limit.

$$
\lim _{x \rightarrow 5} 4 x+1=21
$$

That is, given $\varepsilon>0$, find a value of $\delta>0$ so that the formal definition holds.

Solution:

Let $f(x)=4 x+1$. We claim that $\delta=\varepsilon / 4$ will work. To see this, we suppose that x satisfies $0<|x-5|<\varepsilon / 4$. Then

$$
|f(x)-21|=|4 x+1-21|=4|x-5|<4 \times \frac{\varepsilon}{4}=\varepsilon
$$

3. (4 points) Carefully prove that the equation below has at least one real solution. Be sure to quote the appropriate theorems.

$$
x^{3}+5 x+1=0
$$

Solution:

Let $f(x)=x^{3}+5 x+1$. Observe that $f(-2)=-17$ and $f(0)=1$ and that f is continuous on the interval* $[-2,0]$ since it is a polynomial. So f satisfies the hypotheses of the Intermediate Value Theorem. It follows that f attains every value between $f(-2)$ and $f(0)$. So there is a point $c \in(-2,0)$ such that $f(c)=0$. In other words,

$$
c^{3}+5 c+1=0
$$

which is precisely what we wished to show!

* - Other intervals will work.

