1. (3 points) Let $f(x)=\sin \left(\frac{\pi x}{6}\right)-x^{2}$. Find the average rate of change in the function between $x=1$ and $x=3$. Your answer should be a number.

Solution:

$$
f(3)=\sin \left(\frac{3 \pi}{6}\right)-(3)^{2}=-8
$$

and

$$
f(1)=\sin \left(\frac{\pi}{6}\right)-(1)^{2}=-1 / 2
$$

It follows that

$$
f_{\text {avg }}=\frac{f(3)-f(1)}{3-1}=\frac{-15}{4}
$$

2. (4 points) Let $y=f(x)$ as shown. Compute the limits that follow (or explain why they do not exist).
(a) $\lim _{x \rightarrow 2} f(x)=$ DNE since the $\mathrm{LHL} \neq$ RHL
(b) $\lim _{x \rightarrow 4^{-}} f(x)=1$

A few comments: Notice that $\lim _{x \rightarrow 4^{+}} f(x)=3$ so that $\lim _{x \rightarrow 4} f(x)=$ DNE.

3. (3 points) Evaluate the limit below.

$$
\lim _{x \rightarrow 5^{-}} \frac{|x-5|}{x-5}=
$$

Can the Quotient Rule (of the Limit Laws) be used for the above limit? No

Solution:

Since $x<5$ we have

$$
\lim _{x \rightarrow 5^{-}} \frac{|x-5|}{x-5}=\lim _{x \rightarrow 5^{-}} \frac{-(x-5)}{x-5}=\lim _{x \rightarrow 5^{-}}-1=-1
$$

