1.8 Continuity and the Intermediate Value Theorem

The general formula to solve a quadratic equation (i.e., a polynomial equation of degree 2) is well known. Some students are surprised to discover that there are also formulas to solve polynomial equations of degree 3 and 4 . This section is motivated by the following example.

Example 1. In 1823 Niels Abel proved that there is no general formula to solve polynomial equations of degree 5 and higher. On the other hand, modern graphing calculators can be used to "solve" the following equation.

$$
\begin{equation*}
x^{5}+3 x-5=0 \tag{1}
\end{equation*}
$$

If we use a utility to sketch the graph of $y=f(x)=x^{5}+3 x-5$, we see that the function appears to have a zero, say x_{0}, near 1 .

That is, there appears to be a real number x_{0} such that $f\left(x_{0}\right)=0$. Is this true? How can we be sure that the function doesn't "jump" over the x-axis as shown in the sketch below?

Continuity

Definition. Continuity at a Point

Let $y=f(x)$ be a function defined on some set D and suppose that c is an interior point of D. That is, $c \in(a, b) \subset D$. We say that the f is continuous at c if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Note: See the text for the corresponding definitions if c is an endpoint.

Remark.
a. A function is simply called continuous if it is continuous at each point in its domain.
b. If f is not continuous at c, we say that f is discontinuous at c and that c is a point of discontinuity of f.

Example 2. Polynomials are continuous for all real numbers since $\lim _{x \rightarrow c} p(x)=p(c)$. On the other hand, let

$$
\begin{equation*}
g(x)=\frac{x^{3}+3 x+2}{x-3} . \tag{2}
\end{equation*}
$$

Then g is continuous on its domain. The real number 3, even though it is not in the domain of g, is a point of discontinuity of g.

Recall the (slightly modified form of the) limit laws from section 2.2 .
Theorem 1. Suppose that L, M, c, and k are real numbers and that

$$
\lim _{x \rightarrow c} f(x)=f(c) \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=g(c)
$$

In other words, suppose that f and g are continuous at c.
a. The Sum/Difference Rule:

$$
\lim _{x \rightarrow c}(f(x) \pm g(x))=f(c) \pm g(c)
$$

That is, the sum or difference of two continuous functions is a continuous function.
b. The Product Rule:

$$
\lim _{x \rightarrow c} f(x) \cdot g(x)=f(c) \cdot g(c)
$$

The product of two continuous functions is continuous.
c. The Quotient Rule:

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{f(c)}{g(c)}, \quad g(c) \neq 0
$$

The quotient of two continuous functions is continuous.
d. The Power Rule: If r and s are integers with no common factor and $s \neq 0$, then

$$
\lim _{x \rightarrow c}(f(x))^{r / s}=(f(c))^{r / s}
$$

provided that the right-hand side is a real number. In other words, $f^{r / s}$ is also a continuous function.

The Power Rule suggests a more general rule.
Theorem 2. The composition of continuous functions is a continuous function.

Intermediate Value Property

Terminology: We say that f attains the value L if there is a c in the domain of f such that $f(c)=L$.

We return to Example 1. Pay close attention to the hypotheses in the following theorem.
Theorem 3. The Intermediate Value Theorem
Suppose f is a continuous function defined on the (closed) interval $[a, b]$. Then f attains every value between $f(a)$ and $f(b)$.

Example 3. Prove that the equation below has a zero between -3 and 2 .

$$
\begin{equation*}
x^{5}+3 x-5=0 \tag{3}
\end{equation*}
$$

Let $f(x)=x^{5}+3 x-5$. Then f is continuous on the interval $[0,2]$ (Why?), $f(0)=-5$ and $f(2)=33$. So by the Intermediate Value Theorem, there exists $c \in(0,2) \subset(-3,2)$ such that $f(c)=0$.

