1. Suppose that $0<a<b$. Prove that there is a point $c \in(a, b)$ such that $c^{2}=a b$. (Hint: There are at least two ways to proceed. Method 1: Let $f(x)=x^{2}-a b$ show that $f(x)$ has a zero, etc. Method 2: Let $g(x)=1 / x$ and use the MVT.)

Solution:

Method 1: Let $f(x)=x^{2}-a b$. Then f is continuous on the interval $[a, b]$ with
$f(a)=a^{2}-a b=a(a-b)<0$ and $f(b)=b^{2}-a b=b(b-a)>0$. It follows by the Intermediate
Value Theorem that there is a $c \in(a, b)$ such that $f(c)=c^{2}-a b=0$.
Method 2: Let $g(x)=1 / x$. Then g is continuous on the interval $[a, b]$ and differentiable on (a, b). So by the MVT, there is a point $c \in(a, b)$ such that

$$
\begin{aligned}
\frac{-1}{c^{2}} & =g^{\prime}(c) \\
& =\frac{g(b)-g(a)}{b-a} \\
& =\frac{1 / b-1 / a}{b-a} \\
& =\frac{-1}{a b}
\end{aligned}
$$

as desired.
Method 3: Since $a b>0$ we may set $c=\sqrt{a b}$. Hence $c^{2}=a b$. Now

$$
0<a^{2}<a b=c^{2}<b^{2} \quad \Longrightarrow \quad a<c<b
$$

2. Let $f(x)=\frac{x^{3}}{3}-x^{2}-3 x+2$. Find the absolute maximum of $f(x)$ on the interval $[1,10]$ and say where it is attained. Justify your answer.

Solution:

$$
f^{\prime}(x)=x^{2}-2 x-3=(x-3)(x+1)
$$

It follows that the critical points are

$$
x=-1,3
$$

Now we just choose the largest from the following three function values.

$$
\begin{aligned}
f(1) & =-5 / 3 \\
f(3) & =-7 \\
f(10) & =616 / 3
\end{aligned}
$$

So the absolute maximum is $f(10)=616 / 3$.
3. (12 points) Solve the following initial value problem.

$$
\frac{d y}{d x}=\frac{1}{2 \sqrt{x}}, \quad y(9)=0
$$

Solution:

$$
\begin{aligned}
\int d y & =\int \frac{d x}{2 \sqrt{x}} \\
y & =\sqrt{x}+C
\end{aligned}
$$

Now the initial conditions imply

$$
0=y(9)=\sqrt{9}+C \Longrightarrow C=-3
$$

Thus

$$
y(x)=\sqrt{x}-3
$$

4. Let $f(x)$ and $g(x)$ be differentiable functions that intersect at a and b (see the sketch). Suppose the vertical distance between the curves is greatest at $x=c$. Show that the tangent lines at $(c, f(c))$ and $(c, g(c))$ must be parallel.

Solution:

If the tangent lines are parallel, $f^{\prime}(c)=g^{\prime}(c)$. To see this, let

$$
h(x)=f(x)-g(x)
$$

The graph of $y=h(x)$ is shown in green. By assumption h has a local maximum at $x=c$. Since c is an interior point and h is differentiable at $c, h^{\prime}(c)=0$ by the First Derivative Theorem for Local Extreme Values. Thus

$$
\begin{aligned}
0 & =h^{\prime}(c) \\
& =f^{\prime}(c)-g^{\prime}(c)
\end{aligned}
$$

The result follows.
5. Evaluate the integrals.
(a) $\int\left(5 \sin 2 x-3 \sec ^{2} x\right) d x$

Solution:

$$
=\frac{-5 \cos 2 x}{2}-3 \tan x+C
$$

(b) $\int\left(5 x^{3}-2 x^{2}+\frac{4}{x^{2}}\right) d x$

Solution:

$$
=\frac{5 x^{4}}{4}-\frac{2 x^{3}}{3}-\frac{4}{x}+C
$$

(c) $\int \frac{x}{\sqrt{x+1}} d x$
(Hint: $x=x+1-1$.)

Solution:

Observe that

$$
\begin{aligned}
\frac{x}{\sqrt{x+1}} & =\frac{x+1}{\sqrt{x+1}}-\frac{1}{\sqrt{x+1}} \\
& =\sqrt{x+1}-\frac{1}{\sqrt{x+1}}
\end{aligned}
$$

so that

$$
\begin{aligned}
\int \frac{x}{\sqrt{x+1}} d x & =\int\left(\sqrt{x+1}-\frac{1}{\sqrt{x+1}}\right) d x \\
& =\frac{(x+1)^{3 / 2}}{3 / 2}-2 \sqrt{x+1}+C
\end{aligned}
$$

6. Let $g(x)=x(x-2) \sqrt{3-x}$. Answer the following questions.

Note: $g^{\prime}(x)=\frac{-5 x^{2}+18 x-12}{2 \sqrt{3-x}}$ and $g^{\prime \prime}(x)=\frac{-3(x-2)(5 x-16)}{4(3-x)^{3 / 2}}$.
Note: The function is defined for $x \leq 3$.
(a) Identify the intervals on which g is increasing and decreasing. You may use a monotonicity chart as we have done in class.

Solution:

It is easy to see that the critical points are $a=\frac{9-\sqrt{21}}{5}, b=\frac{9+\sqrt{21}}{5}$. It follows that g is increasing on (a, b) and decreasing $(-\infty, a)$ and $(b, 3)$.
(b) Identify the intervals on which g is concave up and concave down. You may use a concavity chart as we have done in class.

Solution:

The only possible inflection point occurs at 2 . Notice that g is concave up on $(-\infty, 2)$ and concave down on $(2,3)$.
(c) Identify all local extrema. Indicate whether the given point is a local maximum or minimum.

Solution:

Since g is continuous for $x \leq 3$, the monotonicity charts imply that g has local maximum at b and a local minimum at a.
(d) Identify all inflection points.

Solution:

There is a change in concavity at $x=2$. Since g has a tangent line there, $x=2$ is an inflection point.
(e) Sketch the graph of $y=g(x)$. Give the coordinates of the local extremes.

Notice that the function has zeros at 0,2 , and 3 .

7. Let f be continuous on $[0, \infty)$ with $f(0)=0$. Suppose that $f^{\prime}(x) \geq 1$ for all $x \in(0, \infty)$. Prove that $f(x) \geq x$ for all $[0, \infty)$.

Solution:

One can prove this one using integration but the proof is awkward.
Let $x>0$. Then f satisfies the hypotheses of the MVT on the interval $[0, x]$. It follows that there is a $c \in(0, x)$ such that

$$
\begin{aligned}
& \frac{f(x)-f(0)}{x-0}=f^{\prime}(c) \geq 1 \\
& \quad \Longrightarrow \frac{f(x)}{x} \geq 1
\end{aligned}
$$

Combining this with the fact that $f(0)=0$ yields the desired result.
8. Evaluate the following integrals.
(a) $\int_{3}^{5}(4 x-1)(x+2) d x$

Solution:

$$
\begin{aligned}
& =\int_{3}^{5}\left(4 x^{2}+7 x-2\right) d x \\
& =\left.\left(\frac{4 x^{3}}{3}+\frac{7 x^{2}}{2}-2 x\right)\right|_{3} ^{5} \\
& =\left(\frac{4(5)^{3}}{3}+\frac{7(5)^{2}}{2}-2(5)\right)-\left(\frac{4(3)^{3}}{3}+\frac{7(3)^{2}}{2}-2(3)\right) \\
& =\frac{548}{6}
\end{aligned}
$$

(b) $\int_{0}^{\pi / 3} \cos ^{2} x \sin x d x$

Solution:

We try u-substitution. Let $u=\cos x$. Then $d u=-\sin x d x$ and $u(0)=1, u(\pi / 3)=1 / 2$.

$$
\begin{aligned}
\int_{0}^{\pi / 3} \cos ^{2} x \sin x d x & =-\int_{1}^{1 / 2} u^{2} d u \\
& =\int_{1 / 2}^{1} u^{2} d u \\
& =\left.\frac{u^{3}}{3}\right|_{1 / 2} ^{1}=\frac{7}{24}
\end{aligned}
$$

(c) $\int 4 t^{2} \sqrt{2+t^{3}} d t$

Solution:

$$
\begin{aligned}
\int 4 t^{2} \sqrt{2+t^{3}} d t & =\frac{4}{3} \int \sqrt{u} d u \\
& =\frac{8}{9} u^{\frac{3}{2}}+C \\
& =\frac{8}{9}\left(2+t^{3}\right)^{\frac{3}{2}}+C
\end{aligned}
$$

Once again you should check your work by taking the derivative of the above result.
9. Suppose that $f^{\prime}(x)>0$ for all x and that $f(1)=0$. Which of the statements below must be true about the function

$$
g(x)=\int_{0}^{x} f(t) d t
$$

(a) g is a continuous function of x. True
(b) g is a differentiable function of x. True
(c) The graph of $y=g(x)$ has a horizontal tangent line at $x=1$. True
(d) g has a local minimum at $x=1$. True
(e) g has a local maximum at $x=1$. False
(f) The graph of $y=g(x)$ has an inflection point at $x=1$. False
(g) The graph of $y=g^{\prime}(x)$ crosses the x-axis at $x=1$. True
(h) The graph of $y=g(x)$ is concave up (everywhere). True
10. The graph of $y=f(x)$ is shown below. Answer the following questions. Note: The areas of the shaded regions are $A_{1}=3.25, A_{2}=0.5$ and $A_{3}=3$.
(a) Find the total area of the shaded region.

$$
A_{1}+A_{2}+A_{3}=6.75
$$

(b) Evaluate $\int_{1}^{4} f(x) d x$

$$
\int_{1}^{4} f(x) d x=\int_{1}^{2} f(x) d x+\int_{2}^{4} f(x) d x=0.5-3
$$

(c) Evaluate $\int_{0}^{2} 3 f(x) d x-\int_{2}^{4} f(x) d x=-5.25$
(d) What is the average value of f over the interval $[1,4]$.

From part (b),

$$
f_{\mathrm{avg}}=\frac{1}{4-1} \int_{1}^{4} f(x) d x=\frac{-5 / 2}{3}
$$

11. Find $d y / d x$ in each of the following.
(a) $y=\int_{2}^{x} t \sin t^{2} d t$

Solution:

By the FTC

$$
\frac{d y}{d x}=x \sin x^{2}
$$

(b) $y=\int_{0}^{\sqrt{x}}\left(1+t^{2}\right)^{6} d t$

Solution:

By the FTC and the chain rule,

$$
\frac{d y}{d x}=(1+x)^{6} \frac{1}{2 \sqrt{x}}
$$

12. Estimate the integral below by subdividing the appropriate interval into 4 equal subintervals and evaluating the corresponding Riemann sum using right end points. A Sketch is included for your convenience.

$$
\int_{1}^{3} x^{3} d x
$$

Solution:

(a) So $\Delta x=\frac{3-1}{4}$ and our partition is given by $P=\{1,1.5,2,2.5,3\}$.
(b) We compute the area of each rectangle by multiplying the base, $\Delta x=0.5$ by the height, $f\left(x_{j}\right)$ (since we're using right end points). Thus

$$
\begin{aligned}
& A_{1}=f\left(x_{1}\right) \cdot \Delta x=\left(x_{1}\right)^{3} \cdot 0.5=(1.5)^{3} \cdot 0.5 \\
& A_{2}=f\left(x_{2}\right) \cdot \Delta x=\ldots
\end{aligned}
$$

Notice that if we had been asked to compute the sums using left end points, we would have obtained the formula

$$
A_{j}=f\left(x_{j-1}\right) \cdot \Delta x
$$

for the area of a typical rectangle.
(c) It follows that the Riemann sum is given by

$$
\begin{aligned}
\sum_{j=1}^{4} A_{j} & =\sum_{j=1}^{4} f\left(x_{j}\right) \cdot \Delta x \\
& =\Delta x \cdot \sum_{j=1}^{4}\left(x_{j}\right)^{3} \\
& =\frac{1}{2}\left(\left(x_{1}\right)^{3}+\left(x_{2}\right)^{3}+\left(x_{3}\right)^{3}+\left(x_{4}\right)^{3}\right) \\
& =\frac{1}{2}\left(\left(\frac{3}{2}\right)^{3}+(2)^{3}+\left(\frac{5}{2}\right)^{3}+(3)^{3}\right) \\
& =\frac{1}{2} \cdot 54
\end{aligned}
$$

13. In class we observed that $\sin x^{2}$ has no elementary antiderivative. Nevertheless, show that $\int_{0}^{1} \sin x^{2} d x \leq 1 / 3$. (Hint: You may freely use the fact that $x^{2}-\sin x^{2} \geq 0$ for all $x \in \mathbb{R}$.)

Solution:

Recall that $f \geq 0 \Longrightarrow \int f \geq 0$. Following the hint,

$$
\int_{0}^{1}\left(x^{2}-\sin x^{2}\right) d x \geq 0
$$

Rearranging the inequality above yields

$$
\begin{aligned}
\int_{0}^{1} \sin x^{2} d x & \leq \int_{0}^{1} x^{2} d x \\
& =\left.\frac{x^{3}}{3}\right|_{0} ^{1}=1 / 3
\end{aligned}
$$

14. The graph of a function $y=r(t)$ shows the rate of change (million bacteria/hour) in the population of a bacteria colony when the colony is treated by a certain drug. Answer the questions below.
(a) What are the units of $\int_{0}^{2} r(t) d t$.

Number of bacteria (in millions).
(b) What is the practical meaning of $\int_{0}^{2} r(t) d t$.

The change in the population of the colony after two hours.
(c) In the sketch, carefully shade in the precise region whose area is given by the right-hand sum with $n=4$ (four subdivisions) for the definite integral $\int_{0}^{2} r(t) d t$.
(d) Estimate $\int_{0}^{2} r(t) d t$ by using the right-hand sum
 with $n=4$.
From the sketch,

$$
\begin{aligned}
\int_{0}^{2} r(t) d t & \approx(1 / 2)(1.125+0.75+0.75+0.95) \\
& =1.7875
\end{aligned}
$$

15. Use the following facts to answer the questions below. $\int_{1}^{3} f(x) d x=4, \int_{1}^{3} g(x) d x=-6$, and $\int_{1}^{4} f(x) d x=11$
(a) $\int_{1}^{3}(5 f(x)-2 g(x)) d x=5(4)-2(-6)=32$
(b) $\int_{3}^{4} f(x) d x=-4+11$
(c) If $H(x)=\int_{1}^{x} \frac{3^{t}}{\sqrt{t}} d t$, then $H^{\prime}(x)=\frac{3^{x}}{\sqrt{x}}$
16. Carefully sketch the graph of a continuous function which has the following properties.

- $f(1)=2$
- $f^{\prime}(1)$ does not exist
- $f^{\prime}(4)=f^{\prime \prime}(4)=0$
- $f^{\prime}(x)>0$ for $x<1$
- $f^{\prime}(x)<0$ for $1<x<4$ and $x>4$
- $f^{\prime \prime}(x)>0$ for $x<1$ and $1<x<4$
- $f^{\prime \prime}(x)<0$ for $x>4$

17. Evaluate the integrals.
(a) $\int\left(\frac{\cos 3 x}{4}+5 \sec 2 x \tan 2 x\right) d x=\frac{\sin 3 x}{12}+\frac{5}{2} \sec 2 x+C$
(b) $\int\left(5 x^{4}-2 x^{3}-\frac{2}{\sqrt{3 x}}\right) d x=x^{5}-\frac{x^{4}}{2}-\frac{4 \sqrt{3 x}}{3}+C$
(c) $\int \sin x \cos x d x=\int \frac{\sin 2 x}{2} d x=\frac{-\cos 2 x}{4}+C \quad$ or $\quad \frac{\sin ^{2} x}{2}+C \quad$ or $\quad \frac{-\cos ^{2} x}{2}+C$

Can you explain why there are three antiderivatives? Does this violate Corollary 2 of the Mean Value Theorem (see section 4.2 of the text)?
18. Prove that $g(x)=2 \sqrt{x}$ is a contraction mapping on $[1, \infty)$. That is, show that if $a, b \in[1, \infty)$ then $|g(b)-g(a)| \leq|b-a|$. (Hint: $x \geq 1 \Longrightarrow \sqrt{x} \geq 1$.)

Solution:

Let $a, b \in[1, \infty]$ with $a<b$. Clearly g satisfies the hypotheses of the Mean Value Theorem on $[a, b]$. So there is a $c \in(a, b)$ such that

$$
\begin{aligned}
\frac{g(b)-g(a)}{b-a} & =g^{\prime}(c) \\
& =\frac{1}{\sqrt{c}}
\end{aligned}
$$

Now taking absolute values of both sides yields

$$
\begin{aligned}
\left|\frac{g(b)-g(a)}{b-a}\right| & =\left|\frac{1}{\sqrt{c}}\right| \\
& =\frac{1}{\sqrt{c}} \\
& <1
\end{aligned}
$$

where the last line is an immediate consequence of the the hint since $c>a \geq 1$. The result follows. (Notice that we have actually proved a stronger result...namely, the inequality is strict.)
19. Let $f(x)=\frac{x^{3}}{3}-x^{2}-2 x$. Find the absolute minimum of $f(x)$ on the interval $[-2,2]$ and say where it is attained. Justify your answer.

Solution:

$$
f^{\prime}(x)=x^{2}-2 x-2=(x-1)^{2}-3
$$

It follows that the critical points are

$$
x=1 \pm \sqrt{3}
$$

We choose the smallest from the following three function values...

$$
\begin{aligned}
f(-2) & =-8 / 3 \\
f(1-\sqrt{3}) & =2 \sqrt{3}-\frac{8}{3} \\
f(2) & =-16 / 3
\end{aligned}
$$

So the absolute minimum is $f(2)=-16 / 3$.
20. Find at least one critical point of $p(x)=x \cos ^{2} x$.

Solution:

$$
\begin{aligned}
p^{\prime}(x) & =\cos ^{2} x-2 x \cos x \sin x \\
& =\cos x(\cos x-2 \sin x)
\end{aligned}
$$

It follows that

$$
p^{\prime}(\pi / 2)=0
$$

21. Let $g(x)=\frac{x^{2}+3}{x-1}$. Given that $g^{\prime}(x)=\frac{(x+1)(x-3)}{(x-1)^{2}}$ and $g^{\prime \prime}(x)=\frac{8}{(x-1)^{3}}$, answer the questions below.
(a) Find the equation(s) of all asymptotes.

Solution:

Long division yields

$$
g(x)=x+1+\frac{4}{x-1}
$$

It follows that

$$
\begin{aligned}
\text { V.A.: } & x=1 \\
\text { I.A.: } & y=x+1
\end{aligned}
$$

(b) Identify the intervals on which g is increasing and decreasing. You may use a monotonicity chart as we have done in class.

Solution:

The critical points are $-1,1$, and 3 . It is easy to show that g is increasing on $(-\infty,-1)$ and $(3, \infty)$ and decreasing $(-1,1)$ and $(1,3)$.
(c) Identify the intervals on which g is concave up and concave down. You may use a concavity chart as we have done in class.

Solution:

Notice that g is concave down on $(-\infty, 1)$ and concave up on $(1, \infty)$. Although g changes concavity at 1 , there are no inflection points since $g(1)$ does not exist.
(d) Identify all local extrema. Indicate whether the given point is a local maximum or minimum.

Solution:

Since g is continuous at -1 and 3 , the monotonicity chart imply that g has a local maximum at -1 and a local minimum at 3 .
(e) Sketch the graph of $y=g(x)$. Give the coordinates of the local extremes. Use dashed lines to indicate the asymptotes.

22. Solve the following initial value problem.

$$
\frac{d y}{d x}=\frac{2}{\sqrt{5 x}}, \quad y(5)=0
$$

Solution:

$$
\begin{aligned}
\int d y & =\int \frac{2 d x}{\sqrt{5 x}} \\
y & =\frac{4 \sqrt{5 x}}{5}+C
\end{aligned}
$$

Now the initial conditions imply

$$
0=y(5)=\frac{4 \sqrt{25}}{5}+C \Longrightarrow C=-4
$$

Thus

$$
y(x)=\frac{4 \sqrt{5 x}}{5}-4
$$

23. A rectangular metal box is to contain 36 cubic meters and will have a square base and top. The material for the base costs $\$ 10$ per square meter and the material for sides and top costs $\$ 6$ per square meter. Find the dimensions that minimize cost.

Solution:

(i) Minimize Cost

$$
\begin{aligned}
C & =C_{\text {base }}+C_{\text {Rest }} \\
& =10 x^{2}+6 x^{2}+6(4) x y
\end{aligned}
$$

(ii) Constraints (volume)

Let the box dimensions be x by x by y. Then

$$
\begin{aligned}
x^{2} y & =36 \Longrightarrow \\
y & =36 / x^{2}, \quad x>0
\end{aligned}
$$

(iii) Combine steps (i) and (ii) to obtain a function of a single variable.

$$
C(x)=16 x^{2}+\frac{(24)(36)}{x}
$$

(iv) Find the critical points.

$$
C^{\prime}(x)=32 x-\frac{(24)(36)}{x^{2}}
$$

and

$$
C^{\prime}(x)=0 \quad \Longrightarrow \quad x^{3}=\frac{(24)(36)}{32}
$$

So the only critical point occurs at 3 .
(v) Since our function is not defined on a closed interval we must find some other way to show that C attains a global minimum at 3 on the interval $(0, \infty)$. Notice that

$$
C^{\prime \prime}(3)=32+\frac{2(24)(36)}{3^{3}}>0
$$

It follows that C has a local and hence global minimum at $x=3$.
(vi) It follows from (v) that the cost is minimized by the dimensions $3 \times 3 \times 4$.
24. Suppose that g is continuous on $[a, b]$ and differentiable on (a, b) and that $g(a)>g(b)$. Show that $g^{\prime}(x)$ is negative at some $x \in(a, b)$.

Solution:

By assumption g satisfies the hypotheses of the MVT. So there is a $c \in(a, b)$ such that

$$
g^{\prime}(c)=\frac{g(b)-g(a)}{b-a}=\frac{-}{+}<0
$$

