1. Suppose that $0<a<b$. Prove that there is a point $c \in(a, b)$ such that $c^{2}=a b$. (Hint: There are at least two ways to proceed. Method 1: Let $f(x)=x^{2}-a b$ show that $f(x)$ has a zero, etc. Method 2: Let $g(x)=1 / x$ and use the MVT.)
2. Let $f(x)=\frac{x^{3}}{3}-x^{2}-3 x+2$. Find the absolute maximum of $f(x)$ on the interval $[1,10]$ and say where it is attained. Justify your answer.
3. (12 points) Solve the following initial value problem.

$$
\frac{d y}{d x}=\frac{1}{2 \sqrt{x}}, \quad y(9)=0
$$

4. Let $f(x)$ and $g(x)$ be differentiable functions that intersect at a and b (see the sketch). Suppose the vertical distance between the curves is greatest at $x=c$. Show that the tangent lines at $(c, f(c))$ and $(c, g(c))$ must be parallel.

5. Evaluate the integrals.
(a) $\int\left(5 \sin 2 x-3 \sec ^{2} x\right) d x$
(b) $\int\left(5 x^{3}-2 x^{2}+\frac{4}{x^{2}}\right) d x$
(c) $\int \frac{x}{\sqrt{x+1}} d x$
6. Let $g(x)=x(x-2) \sqrt{3-x}$. Answer the following questions.

Note: $g^{\prime}(x)=\frac{-5 x^{2}+18 x-12}{2 \sqrt{3-x}}$ and $g^{\prime \prime}(x)=\frac{-3(x-2)(5 x-16)}{4(3-x)^{3 / 2}}$.
(a) Identify the intervals on which g is increasing and decreasing. You may use a monotonicity chart as we have done in class.
(b) Identify the intervals on which g is concave up and concave down. You may use a concavity chart as we have done in class.
(c) Identify all local extrema. Indicate whether the given point is a local maximum or minimum.
(d) Identify all inflection points.
(e) Sketch the graph of $y=g(x)$. Give the coordinates of the local extremes.

7. Let f be continuous on $[0, \infty)$ with $f(0)=0$. Suppose that $f^{\prime}(x) \geq 1$ for all $x \in(0, \infty)$. Prove that $f(x) \geq x$ for all $[0, \infty)$.
8. Evaluate the following integrals.
(a) $\int_{3}^{5}(4 x-1)(x+2) d x$
(b) $\int_{0}^{\pi / 3} \cos ^{2} x \sin x d x$
(c) $\int 4 t^{2} \sqrt{2+t^{3}} d t$
9. Suppose that $f^{\prime}(x)>0$ for all x and that $f(1)=0$. Which of the statements below must be true about the function

$$
g(x)=\int_{0}^{x} f(t) d t
$$

(a) g is a continuous function of x.
(b) g is a differentiable function of x.
(c) The graph of $y=g(x)$ has a horizontal tangent line at $x=1$.
(d) g has a local minimum at $x=1$.
(e) g has a local maximum at $x=1$.
(f) The graph of $y=g(x)$ has an inflection point at $x=1$.
(g) The graph of $y=g^{\prime}(x)$ crosses the x-axis at $x=1$.
(h) The graph of $y=g(x)$ is concave up (everywhere).
10. The graph of $y=f(x)$ is shown below. Answer the following questions. Note: The areas of the shaded regions are $A_{1}=3.25, A_{2}=0.5$ and $A_{3}=3$.
(a) Find the total area of the shaded region.
(b) Evaluate $\int_{1}^{4} f(x) d x$
(c) Evaluate $\int_{0}^{2} 3 f(x) d x-\int_{2}^{4} f(x) d x$
(d) What is the average value of f over the interval $[1,4]$.

11. Find $d y / d x$ in each of the following.
(a) $y=\int_{2}^{x} t \sin t^{2} d t$
(b) $y=\int_{0}^{\sqrt{x}}\left(1+t^{2}\right)^{6} d t$
12. Estimate the integral below by subdividing the appropriate interval into 4 equal subintervals and evaluating the corresponding Riemann sum using right end points. A sketch is included for your convenience.

$$
\int_{1}^{3} x^{3} d x
$$

13. In class we observed that $\sin x^{2}$ has no elementary antiderivative. Nevertheless, show that $\int_{0}^{1} \sin x^{2} d x \leq 1 / 3$. (Hint: You may freely use the fact that $x^{2}-\sin x^{2} \geq 0$ for all $x \in \mathbb{R}$.)
14. The graph of a function $y=r(t)$ shows the rate of change (million bacteria/hour) in the population of a bacteria colony when the colony is treated by a certain drug. Answer the questions below.
(a) What are the units of $\int_{0}^{2} r(t) d t$.
(b) What is the practical meaning of $\int_{0}^{2} r(t) d t$.
(c) In the sketch, carefully shade in the precise region whose area is given by the right-hand sum with $n=4$ (four subdivisions) for the definite integral $\int_{0}^{2} r(t) d t$.
(d) Estimate $\int_{0}^{2} r(t) d t$ by using the right-hand sum with $n=4$.

15. Use the following facts to answer the questions below. $\int_{1}^{3} f(x) d x=4, \int_{1}^{3} g(x) d x=-6$, and $\int_{1}^{4} f(x) d x=11$
(a) $\int_{1}^{3}(5 f(x)-2 g(x)) d x=$
(b) $\int_{3}^{4} f(x) d x=$
(c) If $H(x)=\int_{1}^{x} \frac{3^{t}}{\sqrt{t}} d t$, then $H^{\prime}(x)=$
16. Carefully sketch the graph of a continuous function which has the following properties.

- $f(1)=2$
- $f^{\prime}(1)$ does not exist
- $f^{\prime}(4)=f^{\prime \prime}(4)=0$
- $f^{\prime}(x)>0$ for $x<1$
- $f^{\prime}(x)<0$ for $1<x<4$ and $x>4$
- $f^{\prime \prime}(x)>0$ for $x<1$ and $1<x<4$
- $f^{\prime \prime}(x)<0$ for $x>4$

17. Evaluate the integrals.
(a) $\int\left(\frac{\cos 3 x}{4}+5 \sec 2 x \tan 2 x\right) d x$
(b) $\int\left(5 x^{4}-2 x^{3}-\frac{2}{\sqrt{3 x}}\right) d x$
(c) $\int \sin x \cos x d x$
18. Prove that $g(x)=2 \sqrt{x}$ is a contraction mapping on $[1, \infty)$. That is, show that if $a, b \in[1, \infty)$ then $|g(b)-g(a)| \leq|b-a|$. (Hint: $x \geq 1 \Longrightarrow \sqrt{x} \geq 1$.)
19. Let $f(x)=\frac{x^{3}}{3}-x^{2}-2 x$. Find the absolute minimum of $f(x)$ on the interval $[-2,2]$ and say where it is attained. Justify your answer.
20. Find at least one critical point of $p(x)=x \cos ^{2} x$.
21. Let $g(x)=\frac{x^{2}+3}{x-1}$. Given that $g^{\prime}(x)=\frac{(x+1)(x-3)}{(x-1)^{2}}$ and $g^{\prime \prime}(x)=\frac{8}{(x-1)^{3}}$, answer the questions below.
(a) Find the equation(s) of all asymptotes.
(b) Identify the intervals on which g is increasing and decreasing. You may use a monotonicity chart as we have done in class.
(c) Identify the intervals on which g is concave up and concave down. You may use a concavity chart as we have done in class.
(d) Identify all local extrema. Indicate whether the given point is a local maximum or minimum.
(e) Sketch the graph of $y=g(x)$. Give the coordinates of the local extremes. Use dashed lines to indicate the asymptotes.
22. Solve the following initial value problem.

$$
\frac{d y}{d x}=\frac{2}{\sqrt{5 x}}, \quad y(5)=0
$$

23. A rectangular metal box is to contain 36 cubic meters and will have a square base and top. The material for the base costs $\$ 10$ per square meter and the material for sides and top costs $\$ 6$ per square meter. Find the dimensions that minimize cost.
24. Suppose that g is continuous on $[a, b]$ and differentiable on (a, b) and that $g(a)>g(b)$. Show that $g^{\prime}(x)$ is negative at some $x \in(a, b)$.
