1. Show that a quadratic polynomial can have at most two real zeros.

Solution:

Let p be be a quadratic polynomial. Then $p(x)=a x^{2}+b x+c$ for real numbers a, b, and c, $a \neq 0$. Observe that $p^{\prime}(x)=2 a x+b$ has exactly one real zero, $-b / 2 a$. Now suppose that

$$
p\left(x_{1}\right)=p\left(x_{2}\right)=p\left(x_{3}\right)=0
$$

for distinct real numbers, say $x_{1}<x_{2}<x_{3}$. Since p is differentiable everywhere, Rolle's Theorem implies that there are distinct real numbers s and t such that $x_{1}<s<x_{2}<t<x_{3}$ with $p^{\prime}(s)=p^{\prime}(t)=0$ contrary to the observation above. The result follows.
2. Let $f(x)=\frac{x^{2}+x-2}{x+3}$ and answer the questions below. (Note: $f^{\prime}(x)=\frac{x^{2}+6 x+5}{(x+3)^{2}}$ and $\left.f^{\prime \prime}(x)=\frac{8}{(x+3)^{3}}.\right)$
(a) Find the zeros of $f(x)$.
$f(x)=\frac{(x+2)(x-1)}{x+3}$ implies that -2 and 1 are the zeros of f.
(b) Give the equation(s) of and label all asymptotes (vertical, horizontal, or inclined).

Write $f(x)=x-2+4 /(x+3)$. Then
V.A.: $x=-3 \quad$ I.A.: $y=x-2$
(c) Identify the intervals on which f is increasing and decreasing. You may use a monotonicity chart as we have done in class.

The critical points of f are $-5,-3$, and -1 . It is easy to see that, for example, $f^{\prime}>0$ on the interval $(-\infty,-5)$ hence f is increasing on $(-\infty,-5)$. It follows that f is increasing on $(-\infty,-5)$ and $(-1, \infty) . f$ is decreasing on $(-5,-3)$ and $(-3,-1)$. Also, see sketch.
(d) Identify the intervals on which f is concave up and concave down. You may use a concavity chart as we have done in class.

The only possible inflection point is -3 . Notice that $f^{\prime \prime}<0$ on $(-\infty,-3)$ hence f is concave down. Similarly, f is concave up on $(-3, \infty)$.
(e) Identify all local extremes. Indicate whether the given point is a local maximum or minimum.
f has a local maximum at $x=-5$ and a local minimum at $x=-1$.
(f) Identify all inflection points.
f has no inflection points since the only change in concavity occurs at $x=-3$ but f isn't even defined there.
(g) Sketch the graph of $y=f(x)$. Plot all the intercepts, critical points and possible inflection points and use dashed lines to indicate the asymptote(s).

