

Figure 1: The Unit Circle
Recall: Suppose that $P=P(a, b)$ is a point on the unit circle (with θ given in standard position) as shown in Figure 1. Then

$$
\sin \theta=b, \quad \cos \theta=a, \quad \tan \theta=b / a, \quad \text { etc. }
$$

So, for example,

$$
\cos \frac{5 \pi}{6}=\frac{-\sqrt{3}}{2} \quad \text { and } \quad \sec \frac{5 \pi}{3}=\frac{1}{\cos (5 \pi / 3)}=\frac{1}{1 / 2}=2
$$

Figure 2: The green arc is part of the unit circle.
From Figure 2 we see that the area of the shaded region, sector $O P R$, is bounded by the areas of the triangles, $\triangle O P R$ and $\triangle O P S$. Specifically,

$$
a(\triangle O P R)<a(\text { sector } O P R)<a(\triangle O P S)
$$

Since the formula for the area of a sector with central angle θ (measured in radians) with radius r is $\theta r^{2} / 2$, we obtain the important inequality

$$
\begin{gather*}
\frac{1}{2}(1) \sin \theta<\frac{1}{2} \theta(1)^{2}<\frac{1}{2}(1) \tan \theta \quad \text { or } \\
\sin \theta<\theta<\tan \theta \tag{1}
\end{gather*}
$$

To see why this is important, notice that the sine function is positive for $0<\theta<\pi / 2$. Then the left-hand inequality yields

$$
0<\sin \theta<\theta
$$

From this we see that

$$
\lim _{\theta \rightarrow 0^{+}} \sin \theta=0
$$

We will revisit inequality (1) in some later sections.

