

Figure 1: The Unit Circle

Recall: Suppose that P = P(a, b) is a point on the unit circle (with θ given in standard position) as shown in Figure 1. Then

$$\sin \theta = b$$
, $\cos \theta = a$, $\tan \theta = b/a$, etc.

So, for example,

$$\cos\frac{5\pi}{6} = \frac{-\sqrt{3}}{2}$$
 and $\sec\frac{5\pi}{3} = \frac{1}{\cos(5\pi/3)} = \frac{1}{1/2} = 2$

Figure 2: The green arc is part of the unit circle.

From Figure 2 we see that the area of the shaded region, sector OPR, is bounded by the areas of the triangles, ΔOPR and ΔOPS . Specifically,

 $a(\triangle OPR) < a(\mathbf{sector}OPR) < a(\triangle OPS)$

Since the formula for the area of a sector with central angle θ (measured in radians) with radius r is $\theta r^2/2$, we obtain the important inequality

$$\frac{1}{2}(1)\sin\theta < \frac{1}{2}\theta(1)^2 < \frac{1}{2}(1)\tan\theta \quad \text{or} \\ \sin\theta < \theta < \tan\theta \quad (1)$$

To see why this is important, notice that the sine function is positive for $0 < \theta < \pi/2$. Then the left-hand inequality yields

 $0 < \sin \theta < \theta$

From this we see that

$$\lim_{\theta \to 0^+} \sin \theta = 0$$

We will revisit inequality (1) in some later sections.