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Figure 1: The Unit Circle

Recall: Suppose that P = P (a, b) is a point on the unit circle (with θ given in standard position) as
shown in Figure 1. Then

sin θ = b, cos θ = a, tan θ = b/a, etc.

So, for example,

cos
5π

6
=

−
√
3

2
and sec

5π

3
=

1

cos(5π/3)
=

1

1/2
= 2
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Figure 2: The green arc is part of the unit circle.

From Figure 2 we see that the area of the shaded region, sector OPR, is bounded by the areas of the
triangles, ∆OPR and △OPS. Specifically,

a(△OPR) < a(sectorOPR) < a(△OPS)

Since the formula for the area of a sector with central angle θ (measured in radians) with radius r is θr2/2,
we obtain the important inequality

1

2
(1) sin θ <

1

2
θ(1)2 <

1

2
(1) tan θ or

sin θ < θ < tan θ (1)

To see why this is important, notice that the sine function is positive for 0 < θ < π/2. Then the left-hand
inequality yields

0 < sin θ < θ

From this we see that
lim
θ→0+

sin θ = 0

We will revisit inequality (1) in some later sections.
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