WeBWork Homework Problem (Hw05 1.7 Limit Definition)

Figure 1: $\lim _{x \rightarrow 1} \sqrt{5-x}=2$

It is a fact that $\lim _{x \rightarrow 1} \sqrt{5-x}=2$. So according to the definition of the limit, given a (small) positive output tolerance $\varepsilon>0$ we should be able to find an input tolerance $\delta>0$ such that

$$
\begin{equation*}
0<|x-1|<\delta \quad \text { implies } \quad|\sqrt{5-x}-2|<\varepsilon \tag{1}
\end{equation*}
$$

In Figure 1 we attempt to illustrate this by setting $\varepsilon=1$. Notice that the input tolerance for $x<1$ is more generous than the tolerance for $x>1$. In particular, $\delta_{1}>\delta_{2}$. This is not too surprising since the function is not linear so we should expect the deltas to be of different sizes.

It follows that if we choose $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}=\delta_{2}=3$ then

$$
0<|x-1|<3 \quad \text { implies } \quad|\sqrt{5-x}-2|<1
$$

That is, if an input x falls within the yellow portion of the domain, then the output $y=\sqrt{5-x}$ will lie within the blue portion of the range!

Figure 2: Zoomed in View of Figure 1 for $\varepsilon=1 / 10$

Let's change the output tolerance from $\varepsilon=1$ to $\varepsilon=1 / 10$. In figure 2 we see a "close-up" shot of the relevant portion of the previous sketch.

Find $\delta=\delta(c, \varepsilon)>0$ so that (1) holds. Recall that $|\sqrt{5-x}-2|<1 / 10$ is equivalent to

$$
-1 / 10<\sqrt{5-x}-2<1 / 10
$$

Now we solve for $x-1$ (why?).

$$
\begin{aligned}
19 / 10 & <\sqrt{5-x}<21 / 10 \quad \text { (See Figure 2) } \\
\Longrightarrow(19 / 10)^{2} & <5-x<(21 / 10)^{2} \\
-(21 / 10)^{2} & <x-5<-(19 / 10)^{2} \\
\underbrace{4-(21 / 10)^{2}}_{-\delta_{1}} & <x-1<\underbrace{4-(19 / 10)^{2}}_{\delta_{2}}
\end{aligned}
$$

It follows that

$$
\delta_{1}=\frac{41}{100}>\frac{39}{100}=\delta_{2}
$$

A careful inspection of Figure 2 shows that $\delta_{1}=41 / 100$ is too big (see the blue circle).
So we let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}=\delta_{2}=39 / 100$, then

$$
0<|x-1|<39 / 100 \quad \text { implies } \quad|\sqrt{5-x}-2|<1 / 10
$$

